
Ion: Notes for the module and patch writer

Tuomo Valkonen
tuomov at iki.fi

February 5, 2008

Ion: Notes for the module and patch writer
Copyright c© 2003–2004 Tuomo Valkonen.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation Li-
cense”.

Abstract

This document is an unorganized collection of notes for those who want to write modules
or patches to Ion.

Contents

1 Class and object hierarchies 2
1.1 Class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Object hierarchies: WRegion parents and managers . . . . . . . . . . . . . 3

1.2.1 Parent–child relations . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Manager–managed relations . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Object system implementation 5

3 The Lua interface 5
3.1 Supported types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Exporting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Calling Lua functions and code . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Miscellaneous notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Miscellaneous design notes 7
4.1 Destroying WObj:s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 The types char* and const char* as function parameters and return

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1



5 C coding style 8
5.1 Whitespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Braces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A GNU Free Documentation License 9

Index 16

1 Class and object hierarchies

While Ion does not not have a truly object-oriented design 1, things that appear on the
computer screen are, however, quite naturally expressed as such “objects”. Therefore Ion
implements a rather primitive OO system for these screen objects and some other things.

It is essential for the module writer to learn this object system, but also people who write
their own binding configuration files necessarily come into contact with the class and
object hierarchies – you need to know which binding setup routines apply where, and
what functions can be used as handlers in which bindings. It is the purpose of this section
to attempt to explain these hierarchies. If you do not wish the read the full section, at least
read the summary at the end of it, so that you understand the very basic relations.

For simplicity we consider only the essential-for-basic-configuration Ioncore, mod_tiling
and mod_query classes. See Appendix ?? for the full class hierarchy visible to Lua side.

1.1 Class hierarchy

One of the most important principles of object-oriented design methodology is inheri-
tance; roughly how classes (objects are instances of classes) extend on others’ features.
Inheritance gives rise to class hierarchy. In the case of single-inheritance this hierarchy
can be expressed as a tree where the class at the root is inherited by all others below it
and so on. Figure 1 lists out the Ion class hierarchy and below we explain what features
of Ion the classes implement.

The core classes:
Obj Is the base of Ion’s object system.
WRegion is the base class for everything corresponding to something on the screen. Each

object of type WRegion has a size and position relative to the parent WRegion.
While a big part of Ion operates on these instead of more specialised classes, WRe-
gion is a “virtual” base class in that there are no objects of “pure” type WRegion;
all concrete regions are objects of some class that inherits WRegion.

WClientWin is a class for client window objects, the objects that window managers are
supposed to manage.

WWindow is the base class for all internal objects having an X window associated to
them (WClientWins also have X windows associated to them).

WMPlex is a base class for all regions that “multiplex” other regions. This means that of
the regions managed by the multiplexer, only one can be displayed at a time.

WScreen is an instance of WMPlex for screens.

1. the author doesn’t like such artificial designs

2



Obj
|-->WRegion
| |-->WClientWin
| |-->WWindow
| | |-->WMPlex
| | | |-->WFrame
| | | ‘-->WScreen
| | | ‘-->WRootWin
| | ‘-->WInput (mod_query)
| | |-->WEdln (mod_query)
| | ‘-->WMessage (mod_query)
| |-->WGroup
| | |-->WGroupWS
| | ‘-->WGroupCW
| ‘-->WTiling (mod_tiling)
‘-->WSplit (mod_tiling)

Figure 1: Partial Ioncore, mod_tiling and mod_query class hierarchy.

WRootWin is the class for root windows of X screens. It is an instance of WScreen. Note
that an “X screen” or root window is not necessarily a single physical screen as a
root window may be split over multiple screens when ugly hacks such as Xinerama
are used. (Actually there can be only one root window when Xinerama is used.)

WFrame is the class for frames. While most Ion’s objects have no graphical presentation,
frames basically add to WMPlexes the decorations around client windows (borders,
tabs).

WGroup is the base class for groups. Particular types of groups are workspaces
(WGroupWS) and groups of client windows (WGroupCW).

Classes implemented by the mod_tiling module:

WTiling is the class for tilings of frames.
WSplit (or, more specifically, classes that inherit it) encode the WTiling tree structure.

Classes implemented by the mod_query module:

WInput is a virtual base class for the two classes below.
WEdln is the class for the “queries”, the text inputs that usually appear at bottoms

of frames and sometimes screens. Queries are the functional equivalent of “mini
buffers” in many text editors.

WMessage implements the boxes for warning and other messages that Ion may wish to
display to the user. These also usually appear at bottoms of frames.

There are also some other “proxy” classes that do not refer to objects on the screen. The
only important one of these for basic configuration is WMoveresMode that is used for
binding callbacks in the move and resize mode.

1.2 Object hierarchies: WRegion parents and managers

1.2.1 Parent–child relations

Each object of type WRegion has a parent and possibly a manager associated to it. The
parent for an object is always a WWindow and for WRegion with an X window (WClien-
tWin, WWindow) the parent WWindow is given by the same relation of the X windows.

3



WRootWins
|-->WGroupWSs
|-->WTilings
|-->WClientWins in full screen mode
‘-->WFrames

|-->WGroupCWs
|-->WClientWins
|-->WFrames for transients
‘-->a possible WEdln or WMessage

Figure 2: Most common parent–child relations

WRootWins
|-->WGroupCWs for full screen WClientWins
| |-->WClientWins
| ‘-->WFrames for transients (dialogs)
| ‘--> WClientWin
|-->WGroupWSs for workspaces
| |-->WTiling
| | |-->WFrames
| | | ‘-->WGroupCWs (with contents as above)
| | ‘-->possibly a WStatusBar or WDock
| |-->WFrames for floating content
| |-->possibly a WEdln, WMessage or WMenu
| ‘-->possibly a WStatusBar or WDock (if no tiling)
‘-->WFrames for sticky stuff, such as the scratchpad

Figure 3: Most common manager–managed relations

For other WRegions the relation is not as clear. There is generally very few restrictions
other than the above on the parent—child relation but the most common is as described
in Figure 2.

WRegions have very little control over their children as a parent. The manager WRegion
has much more control over its managed WRegions. Managers, for example, handle re-
size requests, focusing and displaying of the managed regions. Indeed the manager—
managed relationship gives a better picture of the logical ordering of objects on the
screen. Again, there are generally few limits, but the most common hierarchy is given
in Figure 3. Note that sometimes the parent and manager are the same object and not all
regions may have a manager, but all have a parent–a screen if not anything else.

1.2.2 Manager–managed relations

Note that a workspace can manage another workspace. This can be achieved with the
attach_new function, and allows you to nest workspaces as deep as you want.

1.3 Summary

In the standard setup, keeping queries, messages and menus out of consideration:
• The top-level objects that matter are screens and they correspond to physical

screens. The class for screens is WScreen.

4



• Screens contain (multiplex) groups (WGroup) and other objects, such as WFrames.
Some of these are mutually exclusive to be viewed at a time.

• Groups of the specific kind WGroupWS often contain a WTiling tiling for tiling
frames (WFrame), but groups may also directly contain floating frames.

• Frames are the objects with decorations such as tabs and borders. Frames contain
(multiplex) among others (groups of) client windows, to each of which corresponds
a tab in the frame’s decoration. Only one client window (or other object) can be
shown at a time in each frame. The class for client windows is WClientWin.

2 Object system implementation

First, to get things clear, what are considered objects here are C structures containing a
properly initialised structure defined in ioncore/obj.h as the first element (or the first ele-
ment of the structure which is the first element and so on which gives rise to inheritance).
The WObj structure contains a pointer to a WObjDescr class type info structure and a list
of so called “watches”. The WObjDescr structure simply lists the class name, a table of
dynamic functions and a pointer to deinitialisation function (or “destructor”).

Ion does not do any reference counting, garbage collecting or other fancy things related to
automatic safe freeing of objects with its simplistic object system. Instead special watches
(the WWatch structure) may be used to create safe references to objects that might be
destroyed during the time the specific pointer is needed. When an object is destroyed, its
list of watches is processed, setting the pointers in the watches to NULL and the watch
handlers for each watch are called.

3 The Lua interface

This section finally describes the implementation details and how modules should us the
Lua interface. First, in section 3.1 we look at types supported by the interface, how objects
are passed to Lua code and how Lua tables should be accessed from Ion and modules.
In section 3.2 the methods for exporting functions and how they are called from Lua are
explained and in section 3.3 the method for calling Lua functions is explained.

3.1 Supported types

The following types are supported in passing parameters between the C side of Ion and
Lua:

Identifier character C type Description
i int Integer
s char* String
S const char* Constant string
d double
b bool
t ExtlTab Reference to Lua table
f ExltFn Reference to Lua function.
o Any WObj*

The difference between identifiers ’s’ and ’S’ is that constant strings as return values are
not free’d by the level 1 call handler (see below) after passing to Lua (lua_pushstring

5



always makes a copy) unlike normal strings. String parameters are always assumed to
be the property of the caller and thus implicitly const.

Likewise, if a reference to ’t’ or ’f’ is wished to be stored beyond the lifetime of a
function receiving such as an argument, a new reference should be created with extl
_ref_table/fn. References can be free’d with extl_unref_table/fn. References
gotten as return values with the extl_table_get (how these work should be self-
explanatory!) functions are property of the caller and should be unreferenced with the
above-mentioned functions when no longer needed. The functions extl_fn/table_
none() return the equivalent of NULL.

WObjs are passed to Lua code with WWatch userdatas pointing to them so the objects
can be safely deleted although Lua code might still be referencing them. (This is why
SWIG or tolua would not have helped in creating the interface: extra wrappers for each
function would still have been needed to nicely integrate into Ion’s object system. Even in
the case that Ion was written in C++ this would be so unless extra bloat adding pointer-
like objects were used everywhere instead of pointers.) It may be sometimes necessary
check in Lua code that a value known to be an Ion WObj is of certain type. This can be
accomplished with obj_is(obj, "typename"). obj_typename(obj) returns type
name for a WObj.

3.2 Exporting functions

Exported functions (those available to the extension language) are defined by placing
EXTL_EXPORT before the function implementation in the C source. The script mkex-
ports.pl is then used to automatically generate exports.c from the source files if MAKE
_EXPORTS=modulename is specified in the Makefile. All pointers with type beginning
with a ’W’ are assumed to be pointers to something inheriting WObj. In addition to a ta-
ble of exported functions and second level call handlers for these, exports.c will contain
two functions module_register_exports() and module_unregister_exports
() that should then be called in module initialisation and deinitialisation code.

You’ve seen the terms level 1 and 2 call handler mentioned above. The Lua support code
uses two so called call handlers to convert and check the types of parameters passed
from Lua to C and back to Lua. The first one of these call handlers is the same for all
exported functions and indeed lua sees all exported as the same C function (the L1 call
handler) but with different upvalues passing a structure describing the actual function
and the second level call handler. The L1 call handler checks that the parameters received
from Lua match a template given as a string of the identifier characters defined above. If
everything checks out ok, the parameters are then put in an array of C unions that can
contain anyof these known types and the L2 call handler is called.

The L2 call handler (which is automatically generated by the mkexports.pl script) for each
exported function checks that the passed WObjs are of the more refined type required by
the function and then calls the actual function. While the WObj checking could be done
in the L1 handler too, the L2 call handlers are needed because we may not know how the
target platform passes each parameter type to the called function. Thefore we must let
the C compiler generate the code to convert from a simple and known enough parameter
passing method (the unions) to the actual parameter passing method. When the called
function returns everything is done in reverse order for return values (only one return
value is supported by the generated L2 call handlers).

6



3.3 Calling Lua functions and code

The functions extl_call, extl_call_named, extl_dofile and extl_dostring
call a referenced function (ExtlFn), named function, execute a string and a file, respec-
tively. The rest of the parameters for all these functions are similar. The ’spec’ argument is
a string of identifier characters (see above) describing the parameters to be passed. These
parameters follow after ’rspec’. For dofile and dostring these parameters are passed in
the global table arg (same as used for program command lien parameters) and for func-
tions as you might expect. The parameter ’rspec’ is a similar description of return values.
Pointers to variables that should be set to the return values follow after the input values.
The return value of all these functions tells if the call and parameter passing succeeded
or not.

Sometimes it is necessary to block calls to all but a limited set of Ion functions. This can
be accomplished with extl_set_safelist. The parameter to this function is a NULL-
terminated array of strings and the return value is a similar old safelist. The call extl_
set_safelist(NULL) removes any safelist and allows calls to all exported functions.

3.4 Miscellaneous notes

Configuration files should be read as before with the function read_config_for except
that the list of known options is no longer present.

Winprops are now stored in Lua tables and can contain arbitrary properties. The
’proptab’ entry in each WClientWin is a reference to a winprop table or extl_table
_none() if such does not exist and properties may be read with the extl_table_gets
functions. (It is perfectly legal to pass extl_table_none() references to extl_table
_get*.)

4 Miscellaneous design notes

4.1 Destroying WObj:s

To keep Ion’s code as simple as possible yet safe, there are restrictions when the WObj
destroy_obj function that calls watches, the deinit routine and frees memory may be
called directly. In all other cases the mainloop_defer_destroy function should be
used to defer the call of destroy_obj until Ioncore returns to its main event loop.

Calling the destroy_obj function directly is allowed in the following cases:

• In the deinit handler for another object. Usually managed objects are destroyed this
way.

• The object was created during the current call to the function that wants to get rid
of the object. This is the case, for example, when the function created a frame to
manage some other object but for some reason failed to reparent the object to this
frame.

• In a deferred action handler set with mainloop_defer_action. Like deferred
destroys, other deferred actions are called when Ioncore has returned to the main
loop.

• You are absolute sure that C code outside your code has no references to the object.

If there are no serious side effects from deferring destroying the object or you’re unsure
whether it is safe to destroy the object immediately, use mainloop_defer_destroy.

7



4.2 The types char* and const char* as function parameters and return values

The following rules should apply to using strings as return values and parameters to
functions.

Type Return value Parameter
const char* The string is owned by the called

function and the caller is only
quaranteed short-term read ac-
cess to the string.

The called function may only
read the string during its execu-
tion. For further reference a copy
must be made.

char* The string is the caller’s respon-
sibility and it must free it when
no longer needed.

The called function may modify
the string but the “owner” of the
string is case-dependant.

5 C coding style

If you want to submit patches to Ion, you must follow my coding style, even if you think
it is the root of all evil. We don’t want the code to be an incomprehensible mess of styles
and I have better things to do than fix other people’s style to match mine. The style should
be obvious by studying the source, but here’s a list of some things to take note of.

5.1 Whitespace

• Indentations of 4 with spaces.
• No extra spaces between operators, delimiters etc. except

– around logical and, or (&&, ||)
– around the conditional a ? b : c
– after commas and semicolons

In my opinion this helps pointing out arithmetic or other expressions within logical
expressions or parameter lists.

• All kinds of labels are out-tended to the level of the higher level block. For example:
void foo()
{
again:

switch(asdf){
case 1:

...
break;

default:
...
break;

}
}

5.2 Braces

• Opening brace is at the end of the line, except in function bodies, where it is at the
beginning of the line following the definition.

8



• Never put the body of a control statement on the same line with the statement (e.g.
if(foo){ bar() }).
For example, the block
void foo(int a, int b)
{

if(a==b && c+d==e){
...

}
}
has correct style while the block
void foo(int a,int b) {

if (a == b && c + d == e) {
...

}
}
does not.

• The else keyword follows immediately after the closing brace of previous if, if
any. (This might change so I don’t care if you put it on the next line.)

• I have used the convention that control statement bodies containing a single state-
ment do not need braces around the block if, in case of the if all the blocks in
if ... else if ... else contain just one statement. If you want to, just use
braces in every case.

5.3 Names

• Function and variable names only have lower case letters. Type names are in mixed
case while constants and macros (#defines) are in upper case letters.

5.4 Miscellaneous

• In the definition of a pointer variable, the asterisk is attached to the variable name:
char *s;. (One could claim this an exception to the second rule.)

• You might optionally want to use Jed’s foldings to group blocks of related code in
a file to keep it organized:
/*{{{ Many related functions */

void code()
{

...
}

...

/*}}}*/

I think that’s mostly it. Study the source when in doubt.

A GNU Free Documentation License

Version 1.2, November 2002

9



Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and use-
ful document “free” in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public Li-
cense, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals pro-
viding the same freedoms that the software does. But this License is not limited to soft-
ware manuals; it can be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this Li-
cense. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to
use that work under the conditions stated herein. The “Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way requiring per-
mission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

10



The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revis-
ing the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly avail-
able DTD, and standard-conforming simple HTML, PostScript or PDF designed for hu-
man modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section 3.

11



You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin distribu-
tion of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

12



F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative defini-
tion of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

13



5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, un-
der the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmod-
ified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.

14



In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with
. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

15



Index
call handler, 6

destroy_obj, 7

extl_call, 7
extl_call_named, 7
extl_dofile, 7
extl_dostring, 7
extl_set_safelist, 7
ExtlFn, 5
ExtlTab, 5

mainloop_defer_action, 7
mainloop_defer_destroy, 7
manager, 4

Obj, 2

parent, 3

read_config_for, 7
root window, 3

screen
physical, 3
X, 3

WClientWin, 2
WEdln, 3
WFrame, 3
WGroup, 3
WGroupCW, 3
WGroupWS, 3
WInput, 3
WMessage, 3
WObj, 5
WObjDescr, 5
WRegion, 2
WRootWin, 3
WScreen, 2
WSplit, 3
WTiling, 3
WWatch, 5
WWindow, 2

Xinerama, 3

16


	 Class and object hierarchies
	 Class hierarchy
	 Object hierarchies: WRegion parents and managers
	 Parent--child relations
	 Manager--managed relations

	 Summary

	 Object system implementation
	 The Lua interface
	 Supported types
	 Exporting functions
	 Calling Lua functions and code
	 Miscellaneous notes

	 Miscellaneous design notes
	 Destroying WObj:s
	 The types !char*! and !const char*! as function parameters and return values

	 C coding style
	 Whitespace
	 Braces
	 Names
	 Miscellaneous

	 GNU Free Documentation License
	Index

