
Configuring and extending Ion3 with Lua

Tuomo Valkonen
tuomov at iki.fi

2008-04-11

Configuring and extending Ion3 with Lua
Copyright c© 2003–2008 Tuomo Valkonen.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation Li-
cense”.

1

Contents

1 Introduction 5

2 Preliminaries: Key concepts and relations 6
2.1 Modules . 6
2.2 Class and object hierarchies . 7

2.2.1 Class hierarchy . 7
2.2.2 Object hierarchies: WRegion parents and managers 8
2.2.3 Summary . 9

3 Basic configuration 10
3.1 The configuration files . 10
3.2 A walk through cfg_ion.lua . 11
3.3 Keys and rodents . 12

3.3.1 Binding handlers and special variables 13
3.3.2 Guards . 14
3.3.3 Defining the bindings . 14
3.3.4 Examples . 14
3.3.5 Key specifications . 15
3.3.6 Button specifications . 15
3.3.7 A further note on the default binding configuration 16

3.4 Menus . 16
3.4.1 Defining menus . 16
3.4.2 Special menus . 16
3.4.3 Defining context menus . 17
3.4.4 Displaying menus . 17

3.5 Winprops . 18
3.5.1 Sizehint winprops . 19
3.5.2 Classes, roles and instances . 19
3.5.3 Finding window identification . 20
3.5.4 Some common examples . 20

3.6 The statusbar . 21
3.6.1 The template . 21
3.6.2 The systray . 22
3.6.3 Monitors . 22

4 Graphical styles 23
4.1 Drawing engines, style specifications and sub-styles 23

4.1.1 Known styles and substyles . 24
4.2 Defining styles for the default drawing engine 25

4.2.1 The structure of the configuration files 25

2

4.2.2 Defining the styles . 26
4.2.3 An example . 27

4.3 Miscellaneous settings . 28
4.3.1 Frame user attributes . 28
4.3.2 Extra fields for style ‘frame’ . 28
4.3.3 Extra fields for style ‘dock’ . 29

5 Scripting 30
5.1 Hooks . 30
5.2 Referring to regions . 30

5.2.1 Direct object references . 30
5.2.2 Name-based lookups . 31

5.3 Alternative winprop selection criteria . 31
5.4 Writing ion-statusd monitors . 31

6 Function reference 33
6.1 Functions defined in ioncore . 33

6.1.1 WClientWin functions . 41
6.1.2 WFrame functions . 42
6.1.3 WGroup functions . 43
6.1.4 WGroupCW functions . 43
6.1.5 WGroupWS functions . 43
6.1.6 WHook functions . 44
6.1.7 WInfoWin functions . 44
6.1.8 WMPlex functions . 44
6.1.9 WMoveresMode functions . 46
6.1.10 WRegion functions . 46
6.1.11 WRootWin functions . 48
6.1.12 WScreen functions . 49
6.1.13 WTimer functions . 49
6.1.14 WWindow functions . 49
6.1.15 global functions . 49
6.1.16 gr functions . 49
6.1.17 string functions . 50
6.1.18 table functions . 50

6.2 Functions defined in mod_tiling . 50
6.2.1 WSplit functions . 50
6.2.2 WSplitInner functions . 51
6.2.3 WSplitRegion functions . 51
6.2.4 WSplitSplit functions . 51
6.2.5 WTiling functions . 51

6.3 Functions defined in mod_query . 52
6.3.1 WComplProxy functions . 55
6.3.2 WEdln functions . 55
6.3.3 WInput functions . 57

6.4 Functions defined in mod_menu . 57
6.4.1 WMenu functions . 58

6.5 Functions defined in mod_dock . 58
6.5.1 WDock functions . 58

6.6 Functions defined in mod_sp . 59

3

6.7 Functions defined in mod_statusbar . 59
6.7.1 WStatusBar functions . 60

6.8 Functions defined in de . 60
6.9 Hooks . 60
6.10 Miscellaneous . 63

6.10.1 Size policies . 63

A GNU Free Documentation License 64

B Full class hierarchy visible to Lua-side 71

Index 79

Bibliography 81

4

Chapter 1

Introduction

This document is an “advanced user” manual for the X11 window manager Ion, ver-
sion 3. It is an attempt at documenting things that go into Ion’s configuration files, how
to configure Ion by simple modifications to these files and how to write more complex
extensions in Lua, the lightweight configuration and scripting language used by Ion.

Readers unfamiliar with Lua might first want to first glance at some Lua documentation
at

http://www.lua.org/docs.html, or
http://lua-users.org/wiki/LuaTutorial,

although this should not be strictly necessary for basic modifications of configuration
files for anyone with at least some familiarity with programming languages.

Back in this document, first in chapter 2 some key concepts and relations are explained.
These include the module system, and Ion’s object (or “region”) and class hierarchies.
While it may not be necessary to study the latter for basic copy-paste modifications of
configuration files – for that you should not really need this manual either – it is, however,
essential to for more extensive customisation, due to the semi-object-oriented nature of
most of Ion’s scripting interface. Knowing the different object types also helps dealing
with the different binding “contexts” (see Section 3.3) that to some extent mirror these
classes.

The new user, fed up with the default key bindings and eager to just quickly config-
ure Ion to his liking, may therefore just want to skip to Chapter 3, and attempt to work
from therefore. That chapter provides the very basic Ion configuration know-how is pro-
vided: all the different configuration files and their locations are explained, instructions
are given to allow the reader to configure bindings and so-called “winprops”, and the
statusbar templates are also explained.

Next, Chapter 4 explains the notion of drawing engines and graphical styles and how
to write new looks for Ion. More advanced aspects of Ion’s scripting interface are docu-
mented in Chapter 5. Finally, most of the functions provided by Ion’s scripting interface
are listed and documented in the Function reference in Chapter 6. At the end of the doc-
ument an alphabetical listing of all these functions may be found.

5

http://www.lua.org/docs.html
http://lua-users.org/wiki/LuaTutorial

Chapter 2

Preliminaries: Key concepts and relations

The purpose of this chapter to explain some of key concepts and relations you need to
understand before reading the following chapters. These include modules explained in
section 2.1 and the Ion class and object hierarchies, section 2.2.

2.1 Modules

Ion has been designed so that the ’ion’ executable only implements some basic services
on top of which very different kinds of window managers could be build by loading
the appropriate ’modules’. On modern system these modules are simply dynamically
loaded .so libraries. On more primitive systems, or if you want to squeeze total size of
the executable and libraries, the modules can optionally be statically linked to the main
binary, but must nevertheless be loaded with the dopath function. Modules may also
include Lua code.

If no modules are loaded, all client windows appear in full screen mode. To get better
window management support, one or more workspace modules should be loaded. Cur-
rently Ion provides the following modules:

mod_tiling Tilings for workspaces of the original tiled Ion kind.
mod_query Queries (for starting programs and so on) and message boxes.
mod_menu Support for menus, both pull-down and keyboard-operated in-frame

menus.
mod_statusbar Module that implements a statusbar that can be adaptively embedded

in each workspace’s layout.
mod_dock Module for docking Window Maker dock-apps. The dock can both float and

be embedded as the statusbar.
mod_sp This module implements a scratchpad frame that can be toggled on/off every-

where. Think of the ’console’ in some first-person shooters.
mod_sm Session management support module. Loaded automatically when needed!

So-called drawing engines are also implemented as a modules, but they are not discussed
here; see chapter 4.

The stock configuration for the ion3 executable loads all of the modules mentioned above
except mod_dock . The stock configuration for the pwm3 executable (which differs from
the ion3 executable in a few configuration details) loads another set of modules.

6

Obj
|-->WRegion
| |-->WClientWin
| |-->WWindow
| | |-->WMPlex
| | | |-->WFrame
| | | ‘-->WScreen
| | | ‘-->WRootWin
| | ‘-->WInput (mod_query)
| | |-->WEdln (mod_query)
| | ‘-->WMessage (mod_query)
| |-->WGroup
| | |-->WGroupWS
| | ‘-->WGroupCW
| ‘-->WTiling (mod_tiling)
‘-->WSplit (mod_tiling)

Figure 2.1: Partial Ioncore, mod_tiling and mod_query class hierarchy.

2.2 Class and object hierarchies

While Ion does not not have a truly object-oriented design 1, things that appear on the
computer screen are, however, quite naturally expressed as such “objects”. Therefore Ion
implements a rather primitive OO system for these screen objects and some other things.

It is essential for the module writer to learn this object system, but also people who write
their own binding configuration files necessarily come into contact with the class and
object hierarchies – you need to know which binding setup routines apply where, and
what functions can be used as handlers in which bindings. It is the purpose of this section
to attempt to explain these hierarchies. If you do not wish the read the full section, at least
read the summary at the end of it, so that you understand the very basic relations.

For simplicity we consider only the essential-for-basic-configuration Ioncore, mod_tiling
and mod_query classes. See Appendix B for the full class hierarchy visible to Lua side.

2.2.1 Class hierarchy

One of the most important principles of object-oriented design methodology is inheri-
tance; roughly how classes (objects are instances of classes) extend on others’ features.
Inheritance gives rise to class hierarchy. In the case of single-inheritance this hierarchy
can be expressed as a tree where the class at the root is inherited by all others below it
and so on. Figure 2.1 lists out the Ion class hierarchy and below we explain what features
of Ion the classes implement.

The core classes:
Obj Is the base of Ion’s object system.
WRegion is the base class for everything corresponding to something on the screen. Each

object of type WRegion has a size and position relative to the parent WRegion.
While a big part of Ion operates on these instead of more specialised classes, WRe-
gion is a “virtual” base class in that there are no objects of “pure” type WRegion;
all concrete regions are objects of some class that inherits WRegion.

1. the author doesn’t like such artificial designs

7

WClientWin is a class for client window objects, the objects that window managers are
supposed to manage.

WWindow is the base class for all internal objects having an X window associated to
them (WClientWins also have X windows associated to them).

WMPlex is a base class for all regions that “multiplex” other regions. This means that of
the regions managed by the multiplexer, only one can be displayed at a time.

WScreen is an instance of WMPlex for screens.
WRootWin is the class for root windows of X screens. It is an instance of WScreen. Note

that an “X screen” or root window is not necessarily a single physical screen as
a root window may be split over multiple screens when ugly hacks such as Xin-
erama are used. (Actually there can be only one root window when Xinerama is
used.)

WFrame is the class for frames. While most Ion’s objects have no graphical presenta-
tion, frames basically add to WMPlexes the decorations around client windows
(borders, tabs).

WGroup is the base class for groups. Particular types of groups are workspaces
(WGroupWS) and groups of client windows (WGroupCW).

Classes implemented by the mod_tiling module:
WTiling is the class for tilings of frames.
WSplit (or, more specifically, classes that inherit it) encode the WTiling tree structure.
Classes implemented by the mod_query module:
WInput is a virtual base class for the two classes below.
WEdln is the class for the “queries”, the text inputs that usually appear at bottoms of

frames and sometimes screens. Queries are the functional equivalent of “mini
buffers” in many text editors.

WMessage implements the boxes for warning and other messages that Ion may wish to
display to the user. These also usually appear at bottoms of frames.

There are also some other “proxy” classes that do not refer to objects on the screen. The
only important one of these for basic configuration is WMoveresMode that is used for
binding callbacks in the move and resize mode.

2.2.2 Object hierarchies: WRegion parents and managers

Parent–child relations

Each object of type WRegion has a parent and possibly a manager associated to it. The
parent for an object is always a WWindow and for WRegion with an X window (WClien-
tWin, WWindow) the parent WWindow is given by the same relation of the X windows.
For other WRegions the relation is not as clear. There is generally very few restrictions
other than the above on the parent—child relation but the most common is as described
in Figure 2.2.

WRegions have very little control over their children as a parent. The manager WRegion
has much more control over its managed WRegions. Managers, for example, handle re-
size requests, focusing and displaying of the managed regions. Indeed the manager—
managed relationship gives a better picture of the logical ordering of objects on the
screen. Again, there are generally few limits, but the most common hierarchy is given
in Figure 2.3. Note that sometimes the parent and manager are the same object and not
all regions may have a manager, but all non-screen regions have a parent—a screen if not
anything else.

8

WRootWins
|-->WGroupWSs
|-->WTilings
|-->WClientWins in full screen mode
‘-->WFrames

|-->WGroupCWs
|-->WClientWins
|-->WFrames for transients
‘-->a possible WEdln or WMessage

Figure 2.2: Most common parent–child relations

WRootWins
|-->WGroupCWs for full screen WClientWins
| |-->WClientWins
| ‘-->WFrames for transients (dialogs)
| ‘--> WClientWin
|-->WGroupWSs for workspaces
| |-->WTiling
| | |-->WFrames
| | | ‘-->WGroupCWs (with contents as above)
| | ‘-->possibly a WStatusBar or WDock
| |-->WFrames for floating content
| |-->possibly a WEdln, WMessage or WMenu
| ‘-->possibly a WStatusBar or WDock (if no tiling)
‘-->WFrames for sticky stuff, such as the scratchpad

Figure 2.3: Most common manager–managed relations

Manager–managed relations

Note that a workspace can manage another workspace. This can be achieved with the
attach_new function, and allows you to nest workspaces as deep as you want.

2.2.3 Summary

In the standard setup, keeping queries, messages and menus out of consideration:

• The top-level objects that matter are screens and they correspond to physical
screens. The class for screens is WScreen.

• Screens contain (multiplex) groups (WGroup) and other objects, such as WFrames.
Some of these are mutually exclusive to be viewed at a time.

• Groups of the specific kind WGroupWS often contain a WTiling tiling for tiling
frames (WFrame), but groups may also directly contain floating frames.

• Frames are the objects with decorations such as tabs and borders. Frames con-
tain (multiplex) among others (groups of) client windows, to each of which corre-
sponds a tab in the frame’s decoration. Only one client window (or other object)
can be shown at a time in each frame. The class for client windows is WClientWin.

9

Chapter 3

Basic configuration

This chapter should help your configure Ion to your liking. As the your probably already
know, Ion uses Lua as a configuration and extension language. If you’re new to it, you
might first want to read some Lua documentation as already suggested and pointed to in
the Introduction before continuing with this chapter.

Section 3.1 is an overview of the multiple configuration files Ion uses and as a perhaps
more understandable introduction to the general layout of the configuration files, a walk-
through of the main configuration file cfg_ion.lua is provided in section 3.2. How keys
and mouse action are bound to functions is described in detail in 3.3 and in section 3.5
winprops are explained. Finally, the statusbar is explained in 3.6. For a reference on ex-
ported functions, see section 6.

3.1 The configuration files

Ion3, to which document applies, stores its stock configuration files in
/usr/local/etc/ion3/ unless you, the OS package maintainer or whoever installed
the package on the system has modified the variables PREFIX or ETCDIR in system.mk
before compiling Ion. In the first case you probably know where to find the files and
in the other case the system administrator or the OS package maintainer should have
provided documentation to point to the correct location. If these instructions are no
help in locating the correct directory, the command locate cfg_ion.lua might help
provided updatedb has been run recently.

User configuration files go in ˜/.ion3/ . Ion always searches the user configuration file
directory before the stock configuration file directory for files. Therefore, if you want to
change some setting, it is advised against that you modify the stock configuration files
in-place as subsequent installs of Ion will restore the stock configuration files. Instead
you should always make a copy of the stock file in ˜/.ion3/ and modify this file. For sake
of maintainability of your customised configuration, it is recommended against copying
all of the files there. Only copy those files you actually need to modify. Most simple cus-
tomisations, such as changes in a few bindings, are best done entirely within cfg_ion.lua .

All the configuration files are named cfg_*.lua with the “*” part varying. The configura-
tion file for each module mod_modname is cfg_modname.lua , with modname varying
by the module in question. Configuration files can also be compiled into .lc files, and
these are attempted by the configuration file search routines before .lua files.

The following table summarises these and other configuration files:

10

File Description
cfg_ion.lua The main configuration file
cfg_ioncore.lua Configuration file for Ion’s core library. Most of the bindings and

menus are configured here. Bindings that are specific to some mod-
ule are configured in the module’s configuration file. For details, see
section 3.3.

cfg_kludges.lua Settings to get some applications behave more nicely have been col-
lected here. See section 3.5.

cfg_layouts.lua Some workspace layouts are defined here.
cfg_tiling.lua
cfg_query.lua
cfg_menu.lua
cfg_dock.lua
cfg_statusbar.lua
. . .

Configuration files for different modules.

Additionally, there’s the file look.lua that configures the drawing engine, but it is covered
in chapter 4.

3.2 A walk through cfg_ion.lua

As already mentioned cfg_ion.lua is Ion’s main configuration file. Some basic ’feel’ set-
tings are usually configured there and the necessary modules and other configuration
files configuring some more specific aspects of Ion are loaded there. In this section we take
a walk through the stock cfg_ion.lua . Notice that most of the settings are commented-out
(-- is a line comment in Lua) in the actual file, as they’re the defaults nevertheless.

The first thing done in the file, is to set

META="Mod1+"
ALTMETA=""

These settings cause most of Ion’s key bindings to use Mod1 as the modifier key. If
ALTMETA is set, it is used as modifier for the keys that don’t normally use a modifier.
Note that these two are Lua variables used in the configuration files only, and not Ion
settings. For details on modifiers and key binding setup in general, see section 3.3.

Next we do some basic feel configuration:

ioncore.set{
dblclick_delay=250,
kbresize_delay=1500,

}

These two will set the delay between button presses in a double click, and the timeout to
quit resize mode in milliseconds.

ioncore.set{
opaque_resize=true,
warp=true

}

The first of these two settings enables opaque resize mode: in move/resize move frames
and other objects mirror you actions immediately. If opaque resize is disabled, a XOR

11

rubber band is shown during the mode instead. This will, unfortunately, cause Ion to
also grab the X server and has some side effects.

There are some other options as well; see the documentation for ioncore.set for de-
tails.

As a next step, in the actual cfg_ion.lua file, we load cfg_defaults.lua . However, it is
merely a convenience file for doing exactly what we will going through below, and what
is commented out in the actual file. If you do not want to load what cfg_defaults.lua
loads, just comment out the corresponding line, and uncomment the lines for the files
that you want:

--dopath("cfg_defaults")
dopath("cfg_ioncore")
dopath("cfg_kludges")
dopath("cfg_layouts")

Most bindings and menus are defined in cfg_ioncore.lua . Details on making such defi-
nitions follow in sections 3.3 and 3.4, respectively. some kludges or “winprops” to make
some applications behave better under Ion are collected in cfg_kludges.lua ; see section
3.5 for details. In addition to these, this file lists quite a few statements of the form

ioncore.defshortening("[^:]+: (.*)(<[0-9]+>)", "$1$2$|$1$<...$2")

These are used to configure how Ion attempts to shorten window titles when they do
not fit in a Tab. The first argument is a POSIX regular expression that is used to match
against the title and the next is a rule to construct a new title of a match occurs. This
particular rule is used to shorten e.g. ’Foo: barbaz<3>’ to ’barba. . . <3>’; for details see the
function reference entry for ioncore.defshortening. Finally, cfg_layouts.lua defines
some workspace layouts, available through the F9 workspace creation query.

To actually be able to do something besides display windows in full screen mode, we
must next load some modules:

dopath("mod_query")
dopath("mod_menu")
dopath("mod_tiling")
dopath("mod_statusbar")
--dopath("mod_dock")
dopath("mod_sp")

3.3 Keys and rodents

In the stock configuration file setup, most key and mouse bindings are set from the file
cfg_ioncore.lua while module-specific bindings are set from the modules’ main config-
uration files (cfg_modname.lua). This, however, does not have to be so as long as the
module has been loaded prior to defining any module-specific bindings.

Bindings are defined by calling the function defbindings with the “context” of the
bindings and the a table of new bindings to make. The context is simply string indicating
one of the classes of regions (or modes such as WMoveresMode) introduced in section
2.2, and fully listed in appendix B, although not all define a binding map. For example,
the following skeleton would be used to define new bindings for all frames:

12

defbindings("WFrame", {
-- List of bindings to make goes here.

})

There has been some confusion among users about the need to define the “context” for
each binding, so let me try to explain this design decision here. The thing is that if there
was a just a simple ’bind this key to this action’ method without knowledge of the con-
text, some limitations would have to be made on the available actions and writing custom
handlers would be more complicated. In addition one may want to bind the same func-
tion to different key for different types of objects. Indeed, the workspace and frame tab
switching functions are the same both classes being based on WMPlex, and in the stock
configuration the switch to n:th workspaces is bound to Mod1+n while the switch to n:th
tab is bound to the sequence Mod1+k n.

Currently known contexts include: ‘WScreen’, ‘WMPlex’, ‘WMPlex.toplevel’,
‘WFrame’, ‘WFrame.toplevel’, ‘WFrame.floating’, ‘WFrame.tiled’,
‘WFrame.transient’, ‘WMoveresMode’, ‘WGroup’, ‘WGroupCW’, ‘WGroupWS’,
‘WClientWin’, ‘WTiling’, and ‘WStatusBar’. Most of these should be self-explanatory,
corresponding to objects of class with the same name. The ones with ‘.toplevel’ suffix
refer to screens and “toplevel” frames, i.e. frames that are not used for transient win-
dows. Likewise ‘.transient’ refers to frames in transient mode, and ‘.tiled’ and
‘.floating’ to frames in, respectively, tiled and floating modes.

The following subsections describe how to construct elements of the binding table. Note
that defbindings adds the the newly defined bindings to the previous bindings of the
context, overriding duplicates. To unbind an event, set the handler parameter to nil for
each of the functions to be described in the following subsections.

Also note that when multiple objects want to handle a binding, the innermost (when the
root window is considered the outermost) active object in the parent–child hierarchy (see
Figure 2.2) of objects gets to handle the action.

3.3.1 Binding handlers and special variables

Unlike in Ion2, in Ion3 binding handlers are not normally passed as “anonymous func-
tions”, although this is still possible. The preferred method now is to pass the code of the
handler as a string. Two following special variables are available in this code.

Variable Description
_ (underscore) Reference to the object on which the binding was triggered. The ob-

ject is of the same class as the the context of the defbindings call
defining the binding.

_sub Usually, the currently active managed object of the object referred to
by _, but sometimes (e.g. mouse actions on tabs of frames) something
else relevant to the action triggering the binding.

_chld Object corresponding to the currently active child window of the ob-
ject referred to by _. This should seldom be needed.

For example, supposing _ (underscore) is a WFrame, the following handler should move
the active window to the right, if possible:

"_:inc_index(_sub)"

13

3.3.2 Guards

To suppress error messages, each binding handler may also be accompanied by a “guard”
expression that blocks the handler from being called when the guard condition is not met.
Currently the following guard expressions are supported (for both _sub and _chld):

Guard Description
‘_sub:non-nil’ The _sub parameter must be set.
‘_sub:SomeClass’ The _sub parameter must be member of class SomeClass.

3.3.3 Defining the bindings

The descriptions of the individual bindings in the binding table argument to
defbindings should be constructed with the following functions.

Key presses:

• kpress, and kpress_wait(keyspec, handler [, guard]).
• submap(keyspec, { ... more key bindings ... }).
• submap_enter, and submap_wait(handler [, guard]).

Mouse actions:

• mclick, mdblclick, mpress, and mdrag(buttonspec, handler [,
guard]).

The actions that most of these functions correspond to should be clear and as explained
in the reference, kpress_wait is simply kpress with a flag set instructing Ioncore wait
for all modifiers to be released before processing any further actions. This is to stop one
from accidentally calling e.g. WRegion.rqclose multiple times in a row. The submap
function is used to define submaps or “prefix maps”. The second argument to this func-
tion is table listing the key press actions (kpress) in the submap. The submap_enter
handler is called when the submap is entered, in which this handler is defined. Likewise,
the submap_wait handler is called when all modifiers have been released while waiting
for further key presses in the submap.

The parameters keyspec and buttonspec are explained below in detail. The parameter
handler is the handler for the binding, and the optional parameter guard its guard.
These should normally be strings as explained above.

3.3.4 Examples

For example, to just bind the key Mod1+1 to switch to the first workspace and
Mod1+Right to the next workspace, you would make the following call

defbindings("WScreen", {
kpress("Mod1+Right", "_:switch_next()"),
kpress("Mod1+1", "_:switch_nth(1)"),

})

Note that _:switch_nth(1) is the same as calling WMPlex.switch_next(_, 1) as
WScreen inherits WMPlex and this is where the function is actually defined.

Similarly to the above example, to bind the key sequence Mod1+k n switch to the next
managed object within a frame, and Mod1+k 1 to the first, you would issue the following
call:

14

defbindings("WFrame", {
submap("Mod1+K", {

kpress("Right", "_:switch_next()"),
kpress("1", "_:switch_nth(1)"),

}),
})

3.3.5 Key specifications

As seen above, the functions that create key binding specifications require a keyspec
argument. This argument should be a string containing the name of a key as listed in
the X header file keysymdef.h 1 without the XK_ prefix. Most of the key names are quite
intuitive while some are not. For example, the Enter key on the main part of the keyboard
has the less common name Return while the one the numpad is called KP_Enter.

The keyspec string may optionally have multiple “modifier” names followed by a plus
sign (+) as a prefix. X defines the following modifiers:

Shift, Control, Mod1 to Mod5, AnyModifier and Lock.

X allows binding all of these modifiers to almost any key and while this list of modifiers
does not explicitly list keys such as Alt that are common on modern keyboards, such
keys are bound to one of the ModN. On systems running XFree86 Alt is usually Mod1.
On Suns Mod1 is the diamond key and Alt something else. One of the “flying window”
keys on so called Windows-keyboards is probably mapped to Mod3 if you have such a
key. Use the program xmodmap to find out what exactly is bound where.

Ion defaults to AnyModifier in submaps. This can sometimes lead to unwanted effects
when the same key is used with and without explicitly specified modifiers in nested
regions. For this reason, Ion recognises NoModifier as a special modifier that can be used
to reset this default.

Ion ignores the Lock modifier and any ModN (N = 1. . .5) bound to NumLock or
ScrollLock by default because such2 locking keys may otherwise cause confusion.

3.3.6 Button specifications

Button specifications are similar to key definitions but now instead of specifying modi-
fiers and a key, you specify modifiers and one of the button names Button1 to Button5.
Additionally the specification may end with an optional area name following an @-sign.
Only frames currently support areas, and the supported values in this case are ‘border’,
‘tab’, ‘empty_tab’, ‘client’ and nil (for the whole frame).

For example, the following code binds dragging a tab with the first button pressed to
initiate tab drag&drop handling:

defbindings("WFrame", {
mdrag("Button1@tab", "_:p_tabdrag()"),

})

1. This file can usually be found in the directory /usr/X11R6/include/X11/ .
2. Completely useless keys that should be gotten rid of in the author’s opinion.

15

3.3.7 A further note on the default binding configuration

The default binding configuration contains references to the variables META and
ALTMETA instead of directly using the default values of ‘Mod1+’ and ‘’ (nothing). As
explained in section 3.2, the definitions of these variables appear in cfg_ion.lua . This way
you can easily change the the modifiers used by all bindings in the default configuration
without changing the whole binding configuration. Quite a few people prefer to use the
Windows keys as modifiers because many applications already use Alt. Nevertheless,
Mod1 is the default as a key bound to it is available virtually everywhere.

3.4 Menus

3.4.1 Defining menus

In the stock configuration file setup, menus are defined in the file cfg_menus.lua as pre-
viously mentioned. The mod_menu module must be loaded for one to be able to define
menus, and this is done with the function defmenu provided by it.

Here’s an example of the definition of a rather simple menu with a submenu:

defmenu("exitmenu", {
menuentry("Restart", "ioncore.restart()"),
menuentry("Exit", "ioncore.shutdown()"),

})

defmenu("mainmenu", {
menuentry("Lock screen", "ioncore.exec(’xlock’)"),
menuentry("Help", "mod_query.query_man(_)"),
submenu("Exit", "exitmenu"),

})

The menuentry function is used to create an entry in the menu with a title and an entry
handler to be called when the menu entry is activated. The parameters to the handler are
similar to those of binding handlers, and usually the same as those of the binding that
opened the menu.

The submenu function is used to insert a submenu at that point in the menu. (One could
as well just pass a table with the menu entries, but it is not encouraged.)

3.4.2 Special menus

The menu module predefines the following special menus. These can be used just like
the menus defined as above.

16

Menu name Description
‘windowlist’ List of all client windows. Activating an entry jumps to that win-

dow.
‘workspacelist’ List of all workspaces. Activating an entry jumps to that

workspaces.
‘focuslist’ List of client windows with recent activity in them, followed by

previously focused client windows.
‘focuslist_’ List of previously focused client windows.
‘stylemenu’ List of available look_*.lua style files. Activating an entry loads

that style and ask to save the selection.
‘ctxmenu’ Context menu for given object.

3.4.3 Defining context menus

The “ctxmenu” is a special menu that is assembled from a defined context menu for the
object for which the menu was opened for, but also includes the context menus for the
manager objects as submenus.

Context menus for a given region class are defined with the defctxmenu function. This
is other ways similar to defmenu, but the first argument instead being the name of the
menu, the name of the region class to define context menu for. For example, here’s part
of the stock WFrame context menu definition:
defctxmenu("WFrame", {

menuentry("Close", "WRegion.rqclose_propagate(_, _sub)"),
menuentry("Kill", "WClientWin.kill(_sub)", "_sub:WClientWin"),

})

Some of the same “modes” as were available for some bindings may also be used:
‘WFrame.tiled’, ‘WFrame.floating’, and ‘WFrame.transient’.

3.4.4 Displaying menus

The following functions may be used to display menus from binding handlers (and else-
where):

Function Description
mod_menu.menu Keyboard (or mouse) operated menus that open in the

bottom-left corner of a screen or frame.
mod_menu.pmenu Mouse-operated drop-down menus. This function can only

be called from a mouse press or drag handler.
mod_menu.grabmenu A special version of mod_menu.menu that grabs the key-

board and is scrolled with a given key until all modifiers
have been released, after which the selected entry is acti-
vated.

Each of these functions takes three arguments, which when called from a binding handler,
should be the parameters to the handler, and the name of the menu. For example, the
following snippet of of code binds the both ways to open a context menu for a frame:
defbindings("WFrame", {

kpress(MOD1.."M", "mod_menu.menu(_, _sub, ’ctxmenu’)"),
mpress("Button3", "mod_menu.pmenu(_, _sub, ’ctxmenu’)"),

})

17

3.5 Winprops

The so-called “winprops” can be used to change how specific windows are handled and
to set up some kludges to deal with badly behaving applications. They are defined by
calling the function defwinprop with a table containing the properties to set and the
necessary information to identify a window. The currently supported winprops are listed
below, and the subsequent subsections explain the usual method of identifying windows,
and how to obtain this information.

Winprop: acrobatic (boolean)
Description: Set this to true for Acrobat Reader. It has an annoying habit of trying to

manage its dialogs instead of setting them as transients and letting the win-
dow manager do its job, causing Ion and acrobat go a window-switching
loop when a dialog is opened.

Winprop: float (boolean)
Description: Set this to open the window in a floating frame, when in a group.

Winprop: fullscreen (boolean)
Description: Should the window be initially in full screen mode?

Winprop: ignore_cfgrq (boolean)
Description: Should configure requests on the window be ignored? Only has effect on

floating windows.

Winprop: ignore_net_active_window (boolean)
Description: Ignore extended WM hints _NET_ACTIVE_WINDOW request.

Winprop: jumpto (boolean)
Description: Should a newly created client window always be made active, even if the

allocated frame isn’t.

Winprop: new_group (string)
Description: If the region specified by target winprop does not exist (or that win-

prop is not set), create a new workspace using the previously stored lay-
out (see ioncore.deflayout) named by this property. After creating the
workspace, target is attempted to be found again. (If that still fails, the
newly created workspace is still asked to manage the client window.)

Winprop: oneshot (boolean)
Description: Discard this winprop after first use.

Winprop: orientation (string)
Description: The orientation of the window: one of ‘vertical’ or ‘horizontal’. This

is only useful when using the window as a status display.

Winprop: statusbar (string)
Description: Put the window in the statusbar, in the named tray component, (The default

tray component is called simply ‘systray’, and others you give names to
in your custom template, always prefixed by ‘systray_’.

Winprop: switchto (boolean)
Description: Should a newly mapped client window be switched to within its frame.

Winprop: target (string)
Description: The name of an object (workspace, frame) that should manage windows of

this type. See also new_group.

18

Winprop: transient_mode (string)
Description: ‘normal’: No change in behaviour. ‘current’: The window should be

thought of as a transient for the current active client window (if any) even if
it is not marked as a transient by the application. ‘off’: The window should
be handled as a normal window even if it is marked as a transient by the
application.

Winprop: transparent (boolean)
Description: Should frames be made transparent when this window is selected?

3.5.1 Sizehint winprops

Additionally, the winprops max_size, min_size, aspect, resizeinc, and ignore_
max_size, ignore_min_size, ignore_aspect, ignore_resizeinc, may be used
to override application-supplied size hints. The four first ones are tables with the fields w
and h, indicating the width and height size hints in pixels, and the latter ignore winprop
is a boolean.

Finally, the boolean userpos option may be used to override the USPosition flag of
the size hints. Normally, when this flag is set, Ion tries to respect the supplied window
position more than when it is not set. Obviously, this makes sense only for floating win-
dows.

3.5.2 Classes, roles and instances

The identification information supported are class, role, instance, name, is_
transient, and is_dockapp. It is not necessary to specify all of these fields. The
first three are strings, and must exactly match the corresponding information obtained
from the window’s properties. The name field is a Lua-style regular expression matched
against the window’s title. The is_transient field is a boolean that can be used to in-
clude or exclude transients only, while the is_dockapp field is set by Ion for the dock
windows of Window Maker dockapp protocol dockapps. Usually this is the only infor-
mation available for these icon windows.

Ion looks for a matching winprop in the order listed by the following table. An ’E’ in-
dicates that the field must be set in the winprop and it must match the window’s cor-
responding property exactly or, in case of name, the regular expression must match the
window title. An asterisk ’*’ indicates that a winprop where the field is not specified (or
is itself an asterisk in case of the first three fields) is tried.

class role instance other
E E E E
E E E *
E E * E
E E * *
E * E E
E * E *
E * * E
...

...
... etc.

If there are multiple matching winprops with the same class, role and instance, but
other information different, the most recently defined one is used.

19

3.5.3 Finding window identification

The ’Window info’ context menu entry (Mod1+M or Button3 on a tab) can be used to list
the identification information required to set winprops for a window and all the transient
windows managed within it.

Another way to get the identification information is to use xprop. Simply run To get
class and instance, simply run xprop WM_CLASS and click on the particular window of
interest. The class is the latter of the strings while the instance is the former. To get the role
– few windows have this property – use the command xprop WM_ROLE. This method,
however, will not work on transients.

So-called “transient windows” are usually short-lived dialogs (although some programs
abuse this property) that have a parent window that they are “transient for”. On tiled
workspaces Ion displays these windows simultaneously with the parent window at the
bottom of the same frame. Unfortunately xprop is stupid and can’t cope with this situa-
tion, returning the parent window’s properties when the transient is clicked on. For this
reason you’ll have to do a little extra work to get the properties for that window.3

Finally, it should be mentioned that too many authors these days “forget” to set this vital
identification to anything meaningful: everything except name is the same for all of the
program’s windows, for example. Some other programs only set this information after
the window has been mapped, i.e. the window manager has been told to start managing
it, which is obviously too late. Gtk applications in particular are often guilty on both
counts.

3.5.4 Some common examples

Acrobat Reader

The following is absolutely necessary for Acrobat reader:
defwinprop{

class = "AcroRead",
instance = "documentShell",
acrobatic = true,

}

Forcing newly created windows in named frames

The following winprop should place xterm started with command-line parameter
-name sysmon and running a system monitoring program in a particular frame:
defwinprop{

class = "XTerm",
instance = "sysmon",
target = "sysmonframe",

}

For this example to work, we have to somehow create a frame named ‘sysmonframe’.
One way to do this is to make the following call in the Mod1+F3 Lua code query:
mod_query.query_renameframe(_)

3. There’s a patch to xprop to fix this, but nothing seems to be happening with respect to including it in
XFree86.

20

Recall that _ points to the multiplexer (frame or screen) in which the query was opened.
Running this code should open a new query prefilled with the current name of the frame.
In our example we would change the name to ‘sysmonframe’, but we could just as well
have used the default name formed from the frame’s class name and an instance number.

3.6 The statusbar

The mod_statusbar module provides a statusbar that adapts to layouts of tilings, using
only the minimal space needed. Ion only supports one adaptive “status display” object
per screen, so this statusbar is mutually exclusive with the embedded mode of mod_dock
docks.

The statusbar is configured in cfg_statusbar.lua . Typically, the configuration consists
of two steps: creating a statusbar with mod_statusbar.create, and then launching
the separate ion-statusd status daemon process with mod_statusbar.launch_
statusd. This latter phase is done automatically, if it was not done by the configuration
file, but the configuration file may pass extra parameters to ion-statusdmonitors. (See
Section 5.4 for more information on writing ion-statusd monitors.)

A typical cfg_statusbar.lua configuration might look as follows:

-- Create a statusbar
mod_statusbar.create{

screen = 0, -- First screen,
pos = ’bl’, -- bottom left corner
systray = true, -- Swallow systray windows

-- The template
template = "[%date || load:% %>load || mail:% %>mail_new/%>mail_total]"

.. " %filler%systray",
}

-- Launch ion-statusd.
mod_statusbar.launch_statusd{

-- Date meter
date={

-- ISO-8601 date format with additional abbreviated day name
date_format=’%a %Y-%m-%d %H:%M’,

},
}

3.6.1 The template

The template specifies what is shown on the statusbar; for information on the other op-
tions to mod_statusbar.create, see the reference. Strings of the form ‘%spec’ tokens
specially interpreter by the statusbar; the rest appears verbatim. The spec typically con-
sists of the name of the value/meter to display (beginning with a latin alphabet), but may
be preceded by an alignment specifier and a number specifying the minimum width. The
alignment specifiers are: ‘>’ for right, ‘<’ for left, and ‘|’ for centring. Additionally, space
following ‘%’ (that is, the string ‘% ’), adds “stretchable space” at that point. The special

21

string ‘%filler’ may be used to flush the rest of the template to the right end of the
statusbar.

The stretchable space works as follows: mod_statusbar remembers the widest string (in
terms of graphical presentation) that it has seen for each meter, unless the width has
been otherwise constrained. If there is stretchable space in the template, it tries to make
the meter always take this much space, by stretching any space found in the direction
indicated by the alignment specifier: the opposite direction for left or right alignment,
and both for centring.

3.6.2 The systray

The special ‘%systray’ and ‘%systray_*’ (‘*’ varying) monitors indicate where to
place system tray windows. There may be multiple of these. KDE-protocol system tray
icons are placed in ‘%systray’ automatically, unless disabled with the systray option.
Otherwise the statusbar winprop may be used to place any window in any particular
‘%systray_*’.

3.6.3 Monitors

The part before the first underscore of each monitor name, describes the script/plugin/-
module that provides the meter, and any configuration should be passed in the a cor-
responding sub-table mod_statusbar.launch_statusd. Ion comes with date, load
and mail (for plain old mbox) ion-statusd monitor scripts. More may be obtained
from the scripts repository [1]. These included scripts provide the following monitors
and their options

Date

Options: date_format: The date format in as seen above, in the usual strftime for-
mat. formats: table of formats for additional date monitors, the key being the name of
the monitor (without the ‘date_’ prefix).

Monitors: ‘date’ and other user-specified ones with the ‘date_’ prefix.

Load

Options: update_interval: Update interval in milliseconds (default 10s). important
_threshold: Threshold above which the load is marked as important (default 1.5),
so that the drawing engine may be suitably hinted. critical_threshold: Threshold
above which the load is marked as critical (default 4.0).

Monitors: ‘load’ (for all three values), ‘load_1min’, ‘load_5min’ and ‘load_15min’.

Mail

Options: update_interval: Update interval in milliseconds (default 1min). mbox:
mbox-format mailbox location (default $MAIL). files: list of additional mailboxes, the
key giving the name of the monitor.

Monitors: ‘mail_new’, ‘mail_unread’, ‘mail_total’, and corresponding
‘mail_*_new’, ‘mail_*_unread’, and ‘mail_*_total’ for the additional mail-
boxes (‘*’ varying).

22

Chapter 4

Graphical styles

This chapter first gives in section 4.1 a general outline of how drawing engines are used,
of style specifications and then in section 4.2 describes how to specify styles for the de-
fault drawing engine. Some additional settings and user attributes are explained in Sec-
tions 4.3.

4.1 Drawing engines, style specifications and sub-styles

Ion’s drawing routines are abstracted into so-called drawing engine modules that can,
again depending on the system, be dynamically loaded as needed. The drawing engine
modules provide “brushes” that objects can use to draw some high-level primitives such
as borders and text boxes (in addition to simple text and rectangle drawing) on their win-
dows and configure e.g. the shape and background of the window. While the drawing
engines therefore do not directly implement looks for each possible object (that would
hardly be maintainable), different brush styles can be used to give a distinctive look to
different objects and engines could interpret some styles as special cases. Style specifica-
tions are strings of the form

element1-element2-...-elementn

An example of such a style specification is ‘tab-frame’; see the table in subsection 4.1.1
for more styles.

When an object asks for a brush of certain style, the selected drawing engine will attempt
to find the closest match to this specification. The styles/brushes defined by the drawing
engines may have asterisks (‘*’) as some of the elements indicating a match to anything.
Exact matches are preferred to asterisk matches and longer matches to shorter. For ex-
ample, let a brush for style ‘foo-bar-baz’ be queried, then the following brushes are in
order of preference:

foo-bar-baz
foo-*-baz
foo-bar

*

Some of the drawing primitives allow extra attributes to be specified, also in the form

attr1-attr2-...-attrn

These extra attributes are called substyles and allow, for example, the state of the object
to be indicated by different colour sets while keeping the interface at an abstract level
and the drawing engine completely ignorant of the semantics – only the writer of the

23

drawing engine configuration file has to know them. However the drawing engine can
again interpret known substyles as special cases and the default engine indeed does so
with frame tab tag and drag states.)

4.1.1 Known styles and substyles

Frames

Style name Description
‘frame’ Style for frames. Substyle attributes: ‘active’/‘inactive’

(mutually exclusive), and ‘quasiactive’. A frame is “quasi-
active” when an active region has a back-link to it, such as a
detached window.

‘frame-tiled’ A more specific style for tiled frames. Substyle attributes as for
‘frame’.

‘frame-tiled-alt’ An alternative style for tiled frames. Often used to disable the
tab-bar.

‘frame-floating’ A more specific style for floating frames.
‘frame-transient’ A more specific style for frames containing transient windows.

Tabs and menu entries

Style name Description
‘tab’ Style for frames’ tabs and menu entries. Sub-

style attributes: ‘active’/‘inactive’ and
‘selected’/‘unselected’

‘tab-frame’ A more specific style for frames’ tabs. Additional
substyle attributes include those of the ‘frame’ style,
as well as tab-specific ‘tagged’/‘not_tagged’,
‘dragged’/‘not_dragged’, and
‘activity’/‘no_activity’.

‘tab-frame-tiled’,
‘tab-frame-tiled-alt’,
‘tab-frame-floating’,
‘tab-frame-transient’ More specific styles for frames in the different modes.
‘tab-menuentry’ A more specific style for entries in WMenus. Addi-

tional substyle attributes include ‘submenu’ and oc-
casionally also ‘activity’ is used.

‘tab-menuentry-bigmenu’ An alternate style for entries in WMenus.
‘tab-info’ Extra information tab (displayed e.g. for tagged

workspaces).

24

The rest

Style name Description
‘input’ A style for WInputs.
‘input-edln’ A more specific style for WEdlns. Substyle attributes:

‘selection’ for selected text and ‘cursor’ for the cur-
sor indicating current editing point.

‘input-message’ A more specific style for WMessages.
‘input-menu’ A more specific style for WMenus.
‘input-menu-bigmenu’ An alternate style for WMenus.
‘moveres_display’ The box displaying position/size when moving or resiz-

ing frames.
‘actnotify’ Actification notification box.
‘stdisp’ Any status display.
‘stdisp-dock’ The dock.
‘stdisp-statusbar’ The statusbar. Substyles include: the name of any moni-

tor/meter (such as ‘date’), and the supplied hint. Typical
hints are: ‘normal’, ‘important’, and ‘critical’.

4.2 Defining styles for the default drawing engine

Drawing engine style files are usually named look_foo.lua where foo is the name of the
style. The file that Ion loads on startup or when gr.read_config is called, however, is
look.lua and should usually be symlinked to or a copy of of some look_foo.lua .

4.2.1 The structure of the configuration files

The first thing to do in a style file is to choose the drawing engine, possibly loading the
module as well. This is done with the following chunk of code.

if not gr.select_engine("de") then
return

end

The gr.select_engine function sees if the engine given as argument is registered (the
default drawing engine is simply called “de”). If the engine could not be found, it tries
to load a module of the same name. If the engine still is not registered, gr.select_
engine returns ‘false’ and in this case we also exit the style setup script. If the engine
was found, gr.select_engine sees that further requests for brushes are forwarded to
that engine and returns ‘true’.

Before defining new styles it may be a good idea to clear old styles from memory so if the
old configuration defines more specific styles than the new, the old styles don’t override
those specified by the new configuration. That can be done by calling

de.reset()

After this the new styles can be defined with de.defstyle as explained in the next
subsection. Finally, after the styles have been defined we must ask objects on the screen
to look up new brushes to reflect the changes in configuration. This is done with

gr.refresh()

25

Elevated: Inlaid: Ridge: Groove:
hhhhhhhhhhhs hhhhhhhhhhhs sssssssssssh
h..........s .sssssssssh. h..........s s..........h
h. .s .s h. h.sssssssh.s s.hhhhhhhs.h
h. .s .s h. h.s h.s s.h s.h
h. .s .s h. h.shhhhhhh.s s.hsssssss.h
h..........s .shhhhhhhhh. h..........s s..........h
hsssssssssss hsssssssssss shhhhhhhhhhh

h = highlight, s = shadow, . = padding

Figure 4.1: Sketch of different border styles and elements

4.2.2 Defining the styles

Styles for the default drawing engine are defined with the function de.defstyle. It has
two arguments the first being a style specification as explained in previous sections and
the second a table whose fields describe the style:

de.defstyle("some-style", {
attribute = value,
...

})

The supported attributes are described in tables below. The different border elements and
styles referred to there are explained in Figure 4.1.

Colours

Each of these fields a string of the form that can be passed to XAllocNamedColor. Valid
strings are e.g. hexadecimal RGB specifications of the form #RRGGBB and colour names
as specified in /usr/X11R6/lib/X11/rgb.txt (exact path varying).

Field Description
highlight_colour Colour for the “highlight” part of a border.
shadow_colour Colour for the “shadow” part of a border.
foreground_colour Colour for the normal drawing operations, e.g. text.
background_colour Window background colour (unless transparency is enabled)

and background colour boxes.
padding_colour Colour for the “padding” part of a border border. Set to

background_colour if unset.

Borders and widths

All other fields below except border_style are non-negative integers indicating a
number of pixels.

26

Field Description
border_style A string indicating the style of border; one of

‘elevated’/‘inlaid’/‘ridge’/‘groove’ as seen in the
above sketch.

border_sides A string indicating which sides of the border to draw:
‘all’/‘tb’/‘lr’ for all, top and bottom, and left and right. To
control between left/right and top/bottom, use the pixel op-
tions below.

highlight_pixels Width of the highlight part of the border in pixels.
shadow_pixels Width of the shadow part of the border in pixels.
padding_pixels Width of the padding part of the border in pixels.
spacing Space to be left between all kinds of boxes.

Text

Field Description
font Font to be used in text-drawing operations; standard X font name.
text_align How text is to be aligned in text boxes/tabs; one of the strings

‘left’/‘right’/‘center’.

Miscellaneous

Field Description
transparent_background Should windows’ that use this style background be

transparent? true/false.
based_on The name of a previously defined style that this style

should be based on.

Substyles

As discussed in previous sections, styles may have substyles to e.g. indicate different
states of the object being drawn. The “de” engine limits what can be configured in sub-
styles to the set of colours in the first table above, but also specifically interprets for the
main style ‘tab-frame’ the substyles ‘*-*-tagged’ and ‘*-*-*-dragged’ by, respec-
tively, drawing a right angle shape at the top right corner of a tab and by shading the
tab with a stipple pattern. Also for menus the substyles ‘*-*-submenu’ are handled as
a special case.

Substyles are defined with the function de.substyle within the table defining the main
style. The parameters to this function are similar to those of de.defstyle.
de.defstyle("some-style", {

...
de.substyle("some-substyle", {

...
}),
...

})

4.2.3 An example

The following shortened segment from look_cleanviolet.lua should help to clarify the
matters discussed in the previous subsection.

27

de.defstyle("*", {
-- Gray background
highlight_colour = "#eeeeee",
shadow_colour = "#eeeeee",
background_colour = "#aaaaaa",
foreground_colour = "#000000",

shadow_pixels = 1,
highlight_pixels = 1,
padding_pixels = 1,
spacing = 0,
border_style = "elevated",

font = "-*-helvetica-medium-r-normal-*-12-*-*-*-*-*-*-*",
text_align = "center",

})

de.defstyle("tab-frame", {
based_on = "*",

de.substyle("active-selected", {
-- Violet tab
highlight_colour = "#aaaacc",
shadow_colour = "#aaaacc",
background_colour = "#666699",
foreground_colour = "#eeeeee",

}),

-- More substyles would follow ...
})

4.3 Miscellaneous settings

4.3.1 Frame user attributes

The function WFrame.set_grattrmay be used to give frames (and their tabs) arbitrary
extra attributes to be passed to the drawing engine. Hence, by configuring such substyles
in the style configuration files, and turning on the attribute when needed, scripts may
display visual cues related to the frame. There is also one extra attribute specially inter-
preted by the default drawing engine: the ‘numbered’ attribute, which causes numbers
to be displayed on the tabs.

4.3.2 Extra fields for style ‘frame’

The following style fields are independent of the drawing engine used, but are related to
objects’ styles and therefore configured in the drawing engine configuration file.

28

Field Description
bar Controls the style of the tab-bar. Possible values

are the strings ‘none’, ‘inside’, ‘outside’ and
‘shaped’, with the last providing the PWM-style tab-
bars for floating frames.

floatframe_tab_min_w Minimum tab width in pixels for the shaped style,
given that this number times number of tabs doesn’t
exceed frame width.

floatframe_bar_max_w_q Maximum tab-bar width quotient of frame width for
the shaped styles. A number in the interval (0, 1].

4.3.3 Extra fields for style ‘dock’

Field Description
outline_style How borders are drawn: ‘none’ – no border, ‘all’ – border around

whole dock, ‘each’ – border around each dockapp.
tile_size A table with entries ‘width’ and ‘height’, indicating the width

and height of tiles in pixels.

Hopefully that’s enough to get you started in writing new style configuration files for
Ion. When in doubt, study the existing style configuration files.

29

Chapter 5

Scripting

This chapter documents some additional features of the Ion configuration and scripting
interface that can be used for more advanced scripting than the basic configuration ex-
plained in chapter 3.

5.1 Hooks

Hooks are lists of functions to be called when a certain event occurs. There are two types
of them; normal and “alternative” hooks. Normal hooks do not return anything, but alt-
hooks should return a boolean indicating whether it handled its assigned task success-
fully. In the case that true is returned, remaining handlers are not called.

Hook handlers are registered by first finding the hook with ioncore.get_hook and
then calling WHook.add on the (successful) result with the handler as parameter. Simi-
larly handlers are unregistered with WHook.remove. For example:

ioncore.get_hook("ioncore_snapshot_hook"):add(
function() print("Snapshot hook called.") end

)

In this example the hook handler has no parameters, but many hook handlers do. The
types of parameters for each hook are listed in the hook reference, section 6.9.

Note that many of the hooks are called in “protected mode” and can not use any functions
that modify Ion’s internal state.

5.2 Referring to regions

5.2.1 Direct object references

All Ion objects are passed to Lua scripts as ’userdatas’, and you may safely store such
object references for future use. The C-side object may be destroyed while Lua still refers
to the object. All exported functions gracefully fail in such a case, but if you need to
explicitly test that the C-side object still exists, use obj_exists.

As an example, the following short piece of code implements bookmarking:

local bookmarks={}

-- Set bookmark bm point to the region reg
function set_bookmark(bm, reg)

30

bookmarks[bm]=reg
end

-- Go to bookmark bm
function goto_bookmark(bm)

if bookmarks[bm] then
-- We could check that bookmarks[bm] still exists, if we
-- wanted to avoid an error message.
bookmarks[bm]:goto()

end
end

5.2.2 Name-based lookups

If you want to a single non-WClientWin region with an exact known name, use ioncore
.lookup_region. If you want a list of all regions, use ioncore.region_list. Both
functions accept an optional argument that can be used to specify that the returned re-
gion(s) must be of a more specific type. Client windows live in a different namespace and
for them you should use the equivalent functions ioncore.lookup_clientwin and
ioncore.clientwin_list.

To get the name of an object, use WRegion.name. Please be aware, that the names of
client windows reflect their titles and are subject to changes. To change the name of a
non-client window region, use WRegion.set_name.

5.3 Alternative winprop selection criteria

It is possible to write more complex winprop selection routines than those described in
section 3.5. To match a particular winprop using whatever way you want to, just set the
match field of the winprop to a function that receives the as its parameters the triple
(prop, cwin, id), where prop is the table for the winprop itself, cwin is the client
window object, and id is the WClientWin.get_ident result. The function should re-
turn true if the winprop matches, and false otherwise. Note that the match function
is only called after matching against class/role/instance.

The title of a client window can be obtained with WRegion.name. If you want to
match against (almost) arbitrary window properties, have a look at the documentation
for the following functions, and their standard Xlib counterparts: ioncore.x_intern
_atom (XInternAtom), ioncore.x_get_window_property (XGetWindowProperty),
and ioncore.x_get_text_property (XGetTextProperty).

5.4 Writing ion-statusd monitors

All statusbar meters that do not monitor the internal state of Ion should go in the separate
ion-statusd program.

Whenever the user requests a meter ‘%foo’ or ‘%foo_bar’ to be inserted in a statusbar,
mod_statusbar asks ion-statusd to load statusd_foo.lua on its search path (same

31

as that for Ion-side scripts). This script should then supply all meters with the initial part
‘foo’.

To provide this value, the script should simply call statusd.inform with the name of
the meter and the value as a string. Additionally the script should provide a ’template’
for the meter to facilitate expected width calculation by mod_statusbar , and may provide
a ’hint’ for colour-coding the value. The interpretation of hints depends on the graphi-
cal style in use, and currently the stock styles support the ‘normal’, ‘important’ and
‘critical’ hints.

In our example of the ’foo monitor’, at script initialisation we might broadcast the tem-
plate as follows:

statusd.inform("foo_template", "000")

To inform mod_statusbar of the actual value of the meter and indicate that the value is
critical if above 100, we might write the following function:

local function inform_foo(foo)
statusd.inform("foo", tostring(foo))
if foo>100 then

statusd.inform("foo_hint", "critical")
else

statusd.inform("foo_hint", "normal")
end

end

To periodically update the value of the meter, we must use timers. First we must create
one:

local foo_timer=statusd.create_timer()

Then we write a function to be called whenever the timer expires. This function must also
restart the timer.

local function update_foo()
local foo= ... measure foo somehow ...
inform_foo(foo)
foo_timer:set(settings.update_interval, update_foo)

end

Finally, at the end of our script we want to do the initial measurement, and set up timer
for further measurements:

update_foo()

If our scripts supports configurable parameters, the following code (at the beginning of
the script) will allow them to be configured in cfg_statusbar.lua and passed to the status
daemon and our script:

local defaults={
update_interval=10*1000, -- 10 seconds

}

local settings=table.join(statusd.get_config("foo"), defaults)

32

Chapter 6

Function reference

6.1 Functions defined in ioncore

Synopsis: ioncore.TR(s, ...)
Description: gettext+string.format

Synopsis: ioncore.bdoc(text)
Description: Used to enter documentation among bindings so that other programs can

read it. Does nothing.

Synopsis: ioncore.chdir_for(reg, dir)
Description: Change default working directory for new programs started in reg.

Synopsis: ioncore.compile_cmd(cmd, guard)
Description: Compile string cmd into a bindable function. Within cmd, the variable ”_

” (underscore) can be used to refer to the object that was selecting for the
bound action and chosen to handle it. The variable ”_sub” refers to a ”cur-
rently active” sub-object of _, or a sub-object where the action loading to
the binding being called actually occured.
The string guard maybe set to pose limits on _sub. Currently supported
guards are _sub:non-nil and _sub:WFoobar, where WFoobar is a class.

Synopsis: WTimer ioncore.create_timer()
Description: Create a new timer.

Synopsis: ioncore.create_ws(scr, tmpl, layout)
Description: Create new workspace on screen scr. The table tmpl may be used to over-

ride parts of the layout named with layout. If no layout is given, "de-
fault" is used.

Synopsis: ioncore.defbindings(context, bindings)
Description: Define bindings for context context. Here binding is a table composed

of entries created with ioncore.kpress, etc.; see Section 3.3 for details.

Synopsis: ioncore.defctxmenu(ctx, ...)
Description: Define context menu for context ctx, tab being a table of menu entries.

Synopsis: ioncore.deflayout(name, tab)
Description: Define a new workspace layout with name name, and attach/creation pa-

rameters given in tab. The layout "empty" may not be defined.

Synopsis: ioncore.defmenu(name, tab)

33

Description: Define a new menu with name being the menu’s name and tab being a
table of menu entries. If tab.append is set, the entries are appended to
previously-defined ones, if possible.

Synopsis: ioncore.defwinprop(list)
Description: Define a winprop. For more information, see section 3.5.

Synopsis: ioncore.exec_on(reg, cmd, merr_internal)
Description: Run cmd with the environment variable DISPLAY set to point to the root

window of the X screen reg is on. If cmd is prefixed by a colon (:), the fol-
lowing command is executed in an xterm (or other terminal emulator) with
the help of the ion-runinxterm script. If the command is prefixed by two
colons, ion-runinxterm will ask you to press enter after the command is
finished, even if it returns succesfully.

Synopsis: table ioncore.read_savefile(string basename)
Description: Read a savefile.

Synopsis: string ioncore.get_savefile(string basename)
Description: Get a file name to save (session) data in. The string basename should con-

tain no path or extension components.

Synopsis: string ioncore.lookup_script(string file, string sp)
Description: Lookup script file. If try_in_dir is set, it is tried before the standard

search path.

Synopsis: bool ioncore.write_savefile(string basename, table tab)
Description: Write tab in file with basename basename in the session directory.

Synopsis: ioncore.find_manager(obj, t)
Description: Find an object with type name t managing obj or one of its managers.

Synopsis: ioncore.get_dir_for(reg)
Description: Get default working directory for new programs started in reg.

Synopsis: ioncore.getbindings(maybe_context)
Description: Get a table of all bindings.

Synopsis: ioncore.getctxmenu(name)
Description: Returns a context menu defined with ioncore.defctxmenu.

Synopsis: ioncore.getlayout(name, all)
Description: Get named layout (or all of the latter parameter is set, but this is for internal

use only).

Synopsis: ioncore.getmenu(name)
Description: Returns a menu defined with ioncore.defmenu.

Synopsis: ioncore.getwinprop(cwin)
Description: Find winprop table for cwin.

Synopsis: string ioncore.aboutmsg()
Description: Returns an about message (version, author, copyright notice).

Synopsis: WRegion ioncore.activity_first()
Description: Returns first region on activity list.

34

Synopsis: bool ioncore.activity_i(function iterfn)
Description: Iterate over activity list until iterfn returns false. The function is called

in protected mode. This routine returns true if it reaches the end of list
without this happening.

Synopsis: bool ioncore.clientwin_i(function fn)
Description: Iterate over client windows until iterfn returns false. The function is

called in protected mode. This routine returns true if it reaches the end of
list without this happening.

Synopsis: WRegion ioncore.current()
Description: Returns the currently focused region, if any.

Synopsis: bool ioncore.defshortening(string rx, string rule, bool
always)

Description: Add a rule describing how too long titles should be shortened to fit in tabs.
The regular expression rx (POSIX, not Lua!) is used to match titles and
when rx matches, rule is attempted to use as a replacement for title. If
always is set, the rule is used even if no shortening is necessary.
Similarly to sed’s ’s’ command, rule may contain characters that are in-
serted in the resulting string and specials as follows:

Special Description
$0 Place the original string here.
$1 to $9 Insert n:th capture here (as usual,captures are surrounded by

parentheses in the regex).
$| Alternative shortening separator. The shortening described be-

fore the first this kind of separator is tried first and if it fails to
make the string short enough, the next is tried, and so on.

$< Remove characters on the left of this marker to shorten the
string.

$> Remove characters on the right of this marker to shorten the
string. Only the first $< or $> within an alternative shortening
is used.

Synopsis: bool ioncore.detach(WRegion reg, string how)
Description: Detach or reattach reg or any group it is the leader of (see WRegion

.groupleader_of), depending on whether how is ‘set’, ‘unset’ or
‘toggle’. If this region is not a window, it is put into a frame.
Detaching a region means having it managed by its nearest ancestor
WGroup. Reattaching means having it managed where it used to be man-
aged, if a “return placeholder” exists.
Additionally, setting how to ‘forget’, can be used to clear this return place-
holder of the group leader of reg.

Synopsis: integer ioncore.exec(string cmd)
Description: Run cmd with the environment variable DISPLAY set to point to the X dis-

play the WM is running on. No specific screen is set unlike with WRootWin
.exec_on. The PID of the (shell executing the) new process is returned.

Synopsis: WScreen ioncore.find_screen_id(integer id)
Description: Find the screen with numerical id id.

Synopsis: bool ioncore.focushistory_i(function iterfn)

35

Description: Iterate over focus history until iterfn returns false. The function is
called in protected mode. This routine returns true if it reaches the end
of list without this happening.

Synopsis: table ioncore.get()
Description: Get ioncore basic settings. For details see ioncore.set.

Synopsis: table ioncore.get_paths(table tab)
Description: Get important directories (the fields userdir, sessiondir, searchpath

in the returned table).

Synopsis: bool ioncore.goto_activity()
Description: Go to first region on activity list.

Synopsis: WRegion ioncore.goto_first(WRegion reg, string dirstr,
table param)

Description: Go to first region within reg in direction dirstr. For information on
param, see ioncore.navi_next. Additionally this function supports the
boolean nofront field, for not bringing the object to front.

Synopsis: WRegion ioncore.goto_next(WRegion reg, string dirstr,
table param)

Description: Go to region next from reg in direction dirstr. For information on param,
see ioncore.navi_next. Additionally this function supports the boolean
nofront field, for not bringing the object to front.

Synopsis: WScreen ioncore.goto_next_screen()
Description: Switch focus to the next screen and return it.

Note that this function is asynchronous; the screen will not actually have
received the focus when this function returns.

Synopsis: WScreen ioncore.goto_nth_screen(integer id)
Description: Switch focus to the screen with id id and return it.

Note that this function is asynchronous; the screen will not actually have
received the focus when this function returns.

Synopsis: WScreen ioncore.goto_prev_screen()
Description: Switch focus to the previous screen and return it.

Note that this function is asynchronous; the screen will not actually have
received the focus when this function returns.

Synopsis: WRegion ioncore.goto_previous()
Description: Go to and return to a previously active region (if any).

Note that this function is asynchronous; the region will not actually have
received the focus when this function returns.

Synopsis: bool ioncore.is_i18n()
Description: Is Ion supporting locale-specifically multibyte-encoded strings?

Synopsis: bool ioncore.load_module(string modname)
Description: Attempt to load a C-side module.

Synopsis: WClientWin ioncore.lookup_clientwin(string name)
Description: Attempt to find a client window with name name.

36

Synopsis: WRegion ioncore.lookup_region(string name, string
typenam)

Description: Attempt to find a non-client window region with name name and type in-
heriting typenam.

Synopsis: WRegion ioncore.navi_first(WRegion reg, string dirstr,
table param)

Description: Find first region within reg in direction dirstr. For information on param
, see ioncore.navi_next.

Synopsis: WRegion ioncore.navi_next(WRegion reg, string dirstr,
table param)

Description: Find region next from reg in direction dirstr (‘up’, ‘down’, ‘left’,
‘right’, ‘next’, ‘prev’, or ‘any’). The table param may contain the
boolean field nowrap, instructing not to wrap around, and the WRegions
no_ascend and no_descend, and boolean functions ascend_filter
and descend_filter on WRegion pairs (to, from), are used to decide
when to descend or ascend into another region.

Synopsis: integer ioncore.popen_bgread(string cmd, function h,
function errh, string wd)

Description: Run cmd in directory wd with a read pipe connected to its stdout and stderr.
When data is received through one of these pipes, h or errh is called with
that data. When the pipe is closed, the handler is called with nil argument.
The PID of the new process is returned, or -1 on error.

Synopsis: string ioncore.progname()
Description: Returns the name of program using Ioncore.

Synopsis: bool ioncore.region_i(function fn, string typenam)
Description: Iterate over all non-client window regions with (inherited) class typenam

until iterfn returns false. The function is called in protected mode. This
routine returns true if it reaches the end of list without this happening.

Synopsis: void ioncore.request_selection(function fn)
Description: Request (string) selection. The function fn will be called with the selection

when and if it is received.

Synopsis: void ioncore.resign()
Description: Causes the window manager to simply exit without saving state/session.

Synopsis: void ioncore.restart()
Description: Restart, saving session first.

Synopsis: void ioncore.restart_other(string cmd)
Description: Attempt to restart another window manager cmd.

Synopsis: void ioncore.set(table tab)
Description: Set ioncore basic settings. The table tab may contain the following fields.

37

Field Description
opaque_resize (boolean) Controls whether interactive

move and resize operations simply
draw a rubberband during the opera-
tion (false) or immediately affect the ob-
ject in question at every step (true).

warp (boolean) Should focusing operations
move the pointer to the object to be fo-
cused?

switchto (boolean) Should a managing WMPlex
switch to a newly mapped client win-
dow?

screen_notify (boolean) Should notification tooltips be
displayed for hidden workspaces with
activity?

frame_default_index (string) Specifies where to add new re-
gions on the mutually exclusive list of a
frame. One of ‘last’, ‘next’, (for after
current), or ‘next-act’ (for after cur-
rent and anything with activity right af-
ter it).

dblclick_delay (integer) Delay between clicks of a dou-
ble click.

kbresize_delay (integer) Delay in milliseconds for end-
ing keyboard resize mode after inactiv-
ity.

kbresize_t_max (integer) Controls keyboard resize accel-
eration. See description below for de-
tails.

kbresize_t_min (integer) See below.
kbresize_step (floating point) See below.
kbresize_maxacc (floating point) See below.
edge_resistance (integer) Resize edge resistance in pix-

els.
framed_transients (boolean) Put transients in nested

frames.
float_placement_method (string) How to place floating frames.

One of ‘udlr’ (up-down, then left-
right), ‘lrud’ (left-right, then up-down),
or ‘random’.

mousefocus (string) Mouse focus mode: ‘disabled’
or ‘sloppy’.

unsqueeze (boolean) Auto-unsqueeze transients/-
menus/queries/etc.

autoraise (boolean) Autoraise regions in groups
on goto.

When a keyboard resize function is called, and at most kbresize_t_max
milliseconds has passed from a previous call, acceleration factor is reset to
1.0. Otherwise, if at least kbresize_t_min milliseconds have passed from

38

the from previous acceleration update or reset the squere root of the accel-
eration factor is incremented by kbresize_step. The maximum accelera-
tion factor (pixels/call modulo size hints) is given by kbresize_maxacc.
The default values are (200, 50, 30, 100).

Synopsis: bool ioncore.set_paths(table tab)
Description: Set important directories (the fields sessiondir, searchpath of tab).

Synopsis: void ioncore.set_selection(string p)
Description: Set primary selection and cutbuffer0 to p.

Synopsis: void ioncore.shutdown()
Description: End session saving it first.

Synopsis: void ioncore.snapshot()
Description: Save session.

Synopsis: void ioncore.tagged_clear()
Description: Untag all regions.

Synopsis: WRegion ioncore.tagged_first(bool untag)
Description: Returns first tagged object, untagging it as well if untag is set.

Synopsis: bool ioncore.tagged_i(function iterfn)
Description: Iterate over tagged regions until iterfn returns false. The function is

called in protected mode. This routine returns true if it reaches the end of
list without this happening.

Synopsis: void ioncore.unsqueeze(WRegion reg, bool override)
Description: Try to detach reg if it fits poorly in its current location. This function

does not do anything, unless override is set or the unsqueeze option
of ioncore.set is set.

Synopsis: string ioncore.version()
Description: Returns Ioncore version string.

Synopsis: void ioncore.warn(string str)
Description: Issue a warning. How the message is displayed depends on the current

warning handler.

Synopsis: void ioncore.warn_traced(string str)
Description: Similar to ioncore.warn, but also print Lua stack trace.

Synopsis: void ioncore.x_change_property(integer win, integer
atom, integer atom_type, integer format, string mode,
table tab)

Description: Modify a window property. The mode is one of ‘replace’, ‘prepend’ or
‘append’, and format is either 8, 16 or 32. Also see ioncore.x_get_
window_property and the XChangeProperty(3) manual page.

Synopsis: void ioncore.x_delete_property(integer win, integer
atom)

Description: Delete a window property.

Synopsis: string ioncore.x_get_atom_name(integer atom)
Description: Get the name of an atom. See XGetAtomName(3) manual page for details.

39

Synopsis: table ioncore.x_get_text_property(integer win, integer
atom)

Description: Get a text property for a window. The fields in the returned table
(starting from 1) are the null-separated parts of the property. See the
XGetTextProperty(3) manual page for more information.

Synopsis: table ioncore.x_get_window_property(integer win,
integer atom, integer atom_type, integer n32expected,
bool more)

Description: Get a property atom of type atom_type for window win. The
n32expected parameter indicates the expected number of 32bit words,
and more indicates whether all or just this amount of data should be
fetched. Each 8, 16 or 32bit element of the property, as deciphered from
atom_type is a field in the returned table. See XGetWindowProperty(3)
manual page for more information.

Synopsis: integer ioncore.x_intern_atom(string name, bool only_if
_exists)

Description: Create a new atom. See XInternAtom(3) manual page for details.

Synopsis: void ioncore.x_set_text_property(integer win, integer
atom, table tab)

Description: Set a text property for a window. The fields of tab starting from 1
should be the different null-separated parts of the property. See the
XSetTextProperty(3) manual page for more information.

Synopsis: ioncore.kpress(keyspec, cmd, guard)
Description: Creates a binding description table for the action of pressing a key given by

keyspec (with possible modifiers) to the function cmd. The guard controls
when the binding can be called. For more informationp see Section 3.3.

Synopsis: ioncore.kpress_wait(keyspec, cmd, guard)
Description: This is similar to ioncore.kpress but after calling cmd, Ioncore waits for

all modifiers to be released before processing any further actions. For more
information on bindings, see Section 3.3.

Synopsis: bool ioncore.defer(function fn)
Description: Defer execution of fn until the main loop.

Synopsis: WHook ioncore.get_hook(string name)
Description: Find named hook name.

Synopsis: ioncore.match_winprop_dflt(prop, cwin, id)
Description: The basic name-based winprop matching criteria.

Synopsis: ioncore.mclick(buttonspec, cmd, guard)
Description: Creates a binding description table for the action of clicking a mouse button

while possible modifier keys are pressed, both given by buttonspec, to
the function cmd. For more information, see Section 3.3.

Synopsis: ioncore.mdblclick(buttonspec, cmd, guard)
Description: Similar to ioncore.mclick but for double-click. Also see Section 3.3.

Synopsis: ioncore.mdrag(buttonspec, cmd, guard)
Description: Creates a binding description table for the action of moving the mouse

(or other pointing device) while the button given by buttonspec is held

40

pressed and the modifiers given by buttonspec were pressed when the
button was initially pressed. Also see section 3.3.

Synopsis: ioncore.menuentry(name, cmd, guard_or_opts)
Description: Use this function to define normal menu entries. The string name is the

string shown in the visual representation of menu. The parameter cmd
and guard_or_opts (when string) are similar to those of ioncore.
defbindings. If guard_or_opts is a table, it may contains the guard
field, and the priority field, for controlling positioning of entries in

context menus. (The default priority is 1 for most entries, and -1 for auto-
generated submenus.)

Synopsis: ioncore.mpress(buttonspec, cmd, guard)
Description: Similar to ioncore.mclick but for just pressing the mouse button. Also

see Section 3.3.

Synopsis: ioncore.refresh_stylelist()
Description: Refresh list of known style files.

Synopsis: ioncore.submap(keyspec, list)
Description: Returns a function that creates a submap binding description table. When

the key press action keyspec occurs, Ioncore will wait for a further key
presse and act according to the submap. For details, see Section 3.3.

Synopsis: ioncore.submap_enter(cmd, guard)
Description: Submap enter event for bindings.

Synopsis: ioncore.submap_wait(cmd, guard)
Description: Submap modifier release event for bindings.

Synopsis: ioncore.submenu(name, sub_or_name, options)
Description: Use this function to define menu entries for submenus. The parameter sub_

or_name is either a table of menu entries or the name of an already defined
menu. The initial menu entry to highlight can be specified by options.
initial as either an integer starting from 1, or a function that returns
such a number. Another option supported is options.noautoexpand
that will cause mod_query.query_menu to not automatically expand this
submenu.

Synopsis: ioncore.tabnum.clear()
Description: Clear all tab numbers set by ioncore.tabnum.show.

Synopsis: ioncore.tabnum.show(frame, delay)
Description: Show tab numbers on frame, clearing them when submap grab is released

the next time. If delay is given, in milliseconds, the numbers are not actu-
ally displayed until this time has passed.

Synopsis: ioncore.tagged_attach(reg, param)
Description: Attach tagged regions to reg. The method of attach depends on the types

of attached regions and whether reg implements attach_framed and
attach. If param is not set, the default of {switchto=true} is used. The
function returns true if all tagged regions were succesfully attached, and
false otherwisse.

6.1.1 WClientWin functions

41

Synopsis: table WClientWin.get_ident(WClientWin cwin)
Description: Returns a table containing the properties WM_CLASS (table entries

instance and class) and WM_WINDOW_ROLE (role) properties for cwin.
If a property is not set, the corresponding field(s) are unset in the table.

Synopsis: void WClientWin.kill(WClientWin cwin)
Description: Attempt to kill (with XKillWindow) the client that owns the X window

correspoding to cwin.

Synopsis: void WClientWin.nudge(WClientWin cwin)
Description: Attempts to fix window size problems with non-ICCCM compliant pro-

grams.

Synopsis: void WClientWin.quote_next(WClientWin cwin)
Description: Send next key press directly to cwin.

Synopsis: double WClientWin.xid(WClientWin cwin)
Description: Return the X window id for the client window.

6.1.2 WFrame functions

Synopsis: bool WFrame.is_shaded(WFrame frame)
Description: Is frame shaded?

Synopsis: void WFrame.maximize_horiz(WFrame frame)
Description: Attempt to toggle horizontal maximisation of frame.

Synopsis: void WFrame.maximize_vert(WFrame frame)
Description: Attempt to toggle vertical maximisation of frame.

Synopsis: string WFrame.mode(WFrame frame)
Description: Get frame mode.

Synopsis: void WFrame.p_switch_tab(WFrame frame)
Description: Display the region corresponding to the tab that the user pressed on. This

function should only be used by binding it to a mouse action.

Synopsis: void WFrame.p_tabdrag(WFrame frame)
Description: Start dragging the tab that the user pressed on with the pointing device.

This function should only be used by binding it to mpress or mdrag action
with area ‘tab’.

Synopsis: bool WFrame.set_grattr(WFrame frame, string attr,
string how)

Description: Set extra drawing engine attributes for the frame. The parameter attr is
the attribute, and how is one of ‘set’, ‘unset’, or ‘toggle’.

Synopsis: bool WFrame.set_mode(WFrame frame, string modestr)
Description: Set frame mode (one of ‘unknown’, ‘tiled’, ‘floating’, ‘transient’, or

any of these suffixed with ‘-alt’).

Synopsis: bool WFrame.set_shaded(WFrame frame, string how)
Description: Set shading state according to the parameter how (‘set’, ‘unset’, or

‘toggle’). Resulting state is returned, which may not be what was re-
quested.

42

6.1.3 WGroup functions

Synopsis: WRegion WGroup.attach(WGroup ws, WRegion reg, table
param)

Description: Attach and reparent existing region reg to ws. The table param may con-
tain the fields index and switchto that are interpreted as for WMPlex.
attach_new.

Synopsis: WRegion WGroup.attach_new(WGroup ws, table param)
Description: Create a new region to be managed by ws. At least the following fields in

param are understood:
Field Description
type (string) Class of the object to be created. Mandatory.
name (string) Name of the object to be created.
switchto (boolean) Should the region be switched to?
level (integer) Stacking level; default is 1.
modal (boolean) Make object modal; ignored if level is set.
sizepolicy (string) Size policy; see Section 6.10.1.
bottom (boolean) Mark the attached region as the “bottom” of

ws.
In addition parameters to the region to be created are passed in this same
table.

Synopsis: WRegion WGroup.bottom(WGroup ws)
Description: Returns the ‘bottom’ of ws.

Synopsis: bool WGroup.managed_i(WGroup ws, function iterfn)
Description: Iterate over managed regions of ws until iterfn returns false. The func-

tion is called in protected mode. This routine returns true if it reaches the
end of list without this happening.

Synopsis: bool WGroup.set_bottom(WGroup ws, WRegion reg)
Description: Sets the ‘bottom’ of ws. The region reg must already be managed by ws,

unless nil.

Synopsis: bool WGroup.set_fullscreen(WGroup grp, string how)
Description: Set client window reg full screen state according to the parameter how (one

of ‘set’, ‘unset’, or ‘toggle’). Resulting state is returned, which may not
be what was requested.

6.1.4 WGroupCW functions

6.1.5 WGroupWS functions

Synopsis: bool WGroupWS.attach_framed(WGroupWS ws, WRegion reg,
table t)

Description: Attach region reg on ws. At least the following fields in t are supported:
Field Description
switchto Should the region be switched to (boolean)? Optional.
geom Geometry; x and y, if set, indicates top-left of the frame to

be created while width and height, if set, indicate the size
of the client window within that frame. Optional.

43

6.1.6 WHook functions

Synopsis: bool WHook.add(WHook hk, function efn)
Description: Add efn to the list of functions to be called when the hook hk is triggered.

Synopsis: bool WHook.listed(WHook hk, function efn)
Description: Is fn hooked to hook hk?

Synopsis: bool WHook.remove(WHook hk, function efn)
Description: Remove efn from the list of functions to be called when the hook hk is

triggered.

6.1.7 WInfoWin functions

Synopsis: void WInfoWin.set_text(WInfoWin p, string str, integer
maxw)

Description: Set contents of the info window.

6.1.8 WMPlex functions

Synopsis: WRegion WMPlex.attach(WMPlex mplex, WRegion reg, table
param)

Description: Attach and reparent existing region reg to mplex. The table param may
contain the fields index and switchto that are interpreted as for WMPlex
.attach_new.

Synopsis: WRegion WMPlex.attach_new(WMPlex mplex, table param)
Description: Create a new region to be managed by mplex. At least the following fields

in param are understood (all but type are optional).
Field Description
type (string) Class name (a string) of the object to be created.
name (string) Name of the object to be created (a string).
switchto (boolean) Should the region be switched to (boolean)?
unnumbered (boolean) Do not put on the numbered mutually exclu-

sive list.
index (integer) Index on this list, same as for WMPlex.set_

index.
level (integer) Stacking level.
modal (boolean) Shortcut for modal stacking level.
hidden (boolean) Attach hidden, if not prevented by e.g. the

mutually exclusive list being empty. This option over-
rides switchto.

passive (boolean) Skip in certain focusing operations.
pseudomodal (boolean) The attached region is “pseudomodal” if the

stacking level dictates it to be modal. This means that
the region may be hidden to display regions with lesser
stacking levels.

sizepolicy (string) Size policy; see Section 6.10.1.
geom (table) Geometry specification.

In addition parameters to the region to be created are passed in this same
table.

44

Synopsis: void WMPlex.dec_index(WMPlex mplex, WRegion r)
Description: Move r “left” within objects managed by mplex on list 1.

Synopsis: integer WMPlex.get_index(WMPlex mplex, WRegion reg)
Description: Get index of reg on the mutually exclusive list of mplex. The indices begin

from zero.. If reg is not on the list, -1 is returned.

Synopsis: table WMPlex.get_stdisp(WMPlex mplex)
Description: Get status display information. See WMPlex.get_stdisp for information

on the fields.

Synopsis: void WMPlex.inc_index(WMPlex mplex, WRegion r)
Description: Move r “right” within objects managed by mplex on list 1.

Synopsis: bool WMPlex.is_hidden(WMPlex mplex, WRegion reg)
Description: Is reg on within mplex and hidden?

Synopsis: bool WMPlex.managed_i(WMPlex mplex, function iterfn)
Description: Iterate over managed regions of mplex until iterfn returns false. The

function is called in protected mode. This routine returns true if it reaches
the end of list without this happening.

Synopsis: integer WMPlex.mx_count(WMPlex mplex)
Description: Returns the number of objects on the mutually exclusive list of mplex.

Synopsis: WRegion WMPlex.mx_current(WMPlex mplex)
Description: Returns the managed object currently active within the mutually exclusive

list of mplex.

Synopsis: bool WMPlex.mx_i(WMPlex mplex, function iterfn)
Description: Iterate over numbered/mutually exclusive region list of mplex until

iterfn returns false. The function is called in protected mode. This rou-
tine returns true if it reaches the end of list without this happening.

Synopsis: WRegion WMPlex.mx_nth(WMPlex mplex, integer n)
Description: Returns the n:th object on the mutually exclusive list of mplex.

Synopsis: bool WMPlex.set_hidden(WMPlex mplex, WRegion reg,
string how)

Description: Set the visibility of the region reg on mplex as specified with the parameter
how (one of ‘set’, ‘unset’, or ‘toggle’). The resulting state is returned.

Synopsis: void WMPlex.set_index(WMPlex mplex, WRegion reg,
integer index)

Description: Set index of reg to index within the mutually ex-
clusive list of mplex. Special values for index are:
−1 Last.
−2 After WMPlex.mx_current.

Synopsis: WRegion WMPlex.set_stdisp(WMPlex mplex, table t)
Description: Set/create status display for mplex. Table is a standard description of the

object to be created (as passed to e.g. WMPlex.attach_new). In addition,
the following fields are recognised:

45

Field Description
pos (string) The corner of the screen to place the status display

in: one of ‘tl’, ‘tr’, ‘bl’ or ‘br’.
fullsize (boolean) Waste all available space.
action (string) If this field is set to ‘keep’, pos and fullsize are

changed for the existing status display. If this field is set
to ‘remove’, the existing status display is removed. If this
field is not set or is set to ‘replace’, a new status display
is created and the old, if any, removed.

Synopsis: void WMPlex.switch_next(WMPlex mplex)
Description: Have mplex display next (wrt. currently selected) object managed by it.

Synopsis: void WMPlex.switch_nth(WMPlex mplex, integer n)
Description: Have mplex display the n:th object managed by it.

Synopsis: void WMPlex.switch_prev(WMPlex mplex)
Description: Have mplex display previous (wrt. currently selected) object managed by

it.

6.1.9 WMoveresMode functions

Synopsis: void WMoveresMode.cancel(WMoveresMode mode)
Description: Return from move/resize cancelling changes if opaque move/resize has not

been enabled.

Synopsis: void WMoveresMode.finish(WMoveresMode mode)
Description: Return from move/resize mode and apply changes unless opaque

move/resize is enabled.

Synopsis: table WMoveresMode.geom(WMoveresMode mode)
Description: Returns current geometry.

Synopsis: void WMoveresMode.move(WMoveresMode mode, integer
horizmul, integer vertmul)

Description: Move resize mode target one step:
horizmul/vertmul effect

-1 Move left/up
0 No effect
1 Move right/down

Synopsis: void WMoveresMode.resize(WMoveresMode mode, integer
left, integer right, integer top, integer bottom)

Description: Shrink or grow resize mode target one step in each direction. Acceptable
values for the parameters left, right, top and bottom are as follows: -1:
shrink along, 0: do not change, 1: grow along corresponding border.

Synopsis: table WMoveresMode.rqgeom(WMoveresMode mode, table g)
Description: Request exact geometry in move/resize mode. For details on parameters,

see WRegion.rqgeom.

6.1.10 WRegion functions

46

Synopsis: WMoveresMode WRegion.begin_kbresize(WRegion reg)
Description: Enter move/resize mode for reg. The bindings set with ioncore.set_

bindings for WMoveresMode are used in this mode. Of the functions ex-
ported by the Ion C core, only WMoveresMode.resize, WMoveresMode.
move, WMoveresMode.cancel and WMoveresMode.end are allowed to
be called while in this mode.

Synopsis: WRegion WRegion.current(WRegion mgr)
Description: Return the object, if any, that is considered “currently active” within the

objects managed by mplex.

Synopsis: table WRegion.geom(WRegion reg)
Description: Returns the geometry of regwithin its parent; a table with fields x, y, w and

h.

Synopsis: table WRegion.get_configuration(WRegion reg, bool
clientwins)

Description: Get configuration tree. If clientwins is unset, client windows are filtered
out.

Synopsis: bool WRegion.goto(WRegion reg)
Description: Attempt to display reg, save region activity status and then warp to (or

simply set focus to if warping is disabled) reg.
Note that this function is asynchronous; the region will not actually have
received the focus when this function returns.

Synopsis: WRegion WRegion.groupleader_of(WRegion reg)
Description: Returns the group of reg, if reg is its bottom, and reg itself otherwise.

Synopsis: bool WRegion.is_active(WRegion reg, bool pseudoact_ok)
Description: Is reg active/does it or one of it’s children of focus?

Synopsis: bool WRegion.is_activity(WRegion reg)
Description: Is activity notification set on reg.

Synopsis: bool WRegion.is_mapped(WRegion reg)
Description: Is reg visible/is it and all it’s ancestors mapped?

Synopsis: bool WRegion.is_tagged(WRegion reg)
Description: Is reg tagged?

Synopsis: WRegion WRegion.manager(WRegion reg)
Description: Returns the region that manages reg.

Synopsis: string WRegion.name(WRegion reg)
Description: Returns the name for reg.

Synopsis: WWindow WRegion.parent(WRegion reg)
Description: Returns the parent region of reg.

Synopsis: WRootWin WRegion.rootwin_of(WRegion reg)
Description: Returns the root window reg is on.

Synopsis: void WRegion.rqclose(WRegion reg, bool relocate)
Description: Attempt to close/destroy reg. Whether this operation works depends on

whether the particular type of region in question has implemented the fea-
ture and, in case of client windows, whether the client supports the WM_

47

DELETE protocol (see also WClientWin.kill). The region will not be de-
stroyed when this function returns. To find out if and when it is destroyed,
use the ‘deinit’ notification. If relocate is not set, and reg manages
other regions, it will not be closed. Otherwise the managed regions will be
attempted to be relocated.

Synopsis: WRegion WRegion.rqclose_propagate(WRegion reg, WRegion
maybe_sub)

Description: Recursively attempt to close a region or one of the regions managed by it.
If sub is set, it will be used as the managed region, otherwise WRegion.
current(reg). The object to be closed is returned, or NULL if nothing
can be closed. For further details, see notes for WRegion.rqclose.

Synopsis: table WRegion.rqgeom(WRegion reg, table g)
Description: Attempt to resize and/or move reg. The table g is a usual geometry speci-

fication (fields x, y, w and h), but may contain missing fields, in which case,
reg’s manager may attempt to leave that attribute unchanged.

Synopsis: bool WRegion.rqorder(WRegion reg, string ord)
Description: Request ordering. Currently supported values for ord are ‘front’ and

‘back’.

Synopsis: WScreen WRegion.screen_of(WRegion reg)
Description: Returns the screen reg is on.

Synopsis: bool WRegion.set_activity(WRegion reg, string how)
Description: Set activity flag of reg. The how parameter must be one of ‘set’, ‘unset’

or ‘toggle’.

Synopsis: bool WRegion.set_name(WRegion reg, string p)
Description: Set the name of reg to p. If the name is already in use, an instance number

suffix ‘<n>’ will be attempted. If p has such a suffix, it will be modified,
otherwise such a suffix will be added. Setting p to nil will cause current
name to be removed.

Synopsis: bool WRegion.set_name_exact(WRegion reg, string p)
Description: Similar to WRegion.set_name except if the name is already in use, other

instance numbers will not be attempted. The string p should not contain a
‘<n>’ suffix or this function will fail.

Synopsis: bool WRegion.set_tagged(WRegion reg, string how)
Description: Change tagging state of reg as defined by how (one of ‘set’, ‘unset’, or

‘toggle’). The resulting state is returned.

Synopsis: table WRegion.size_hints(WRegion reg)
Description: Returns size hints for reg. The returned table always contains the fields min

?, base? and sometimes the fields max_?, base_? and inc_?, where
?=w, h.

6.1.11 WRootWin functions

Synopsis: WScreen WRootWin.current_scr(WRootWin rootwin)
Description: Returns previously active screen on root window rootwin.

48

6.1.12 WScreen functions

Synopsis: integer WScreen.id(WScreen scr)
Description: Return the numerical id for screen scr.

Synopsis: bool WScreen.set_managed_offset(WScreen scr, table
offset)

Description: Set offset of objects managed by the screen from actual screen geometry. The
table offset should contain the entries x, y, w and h indicating offsets of
that component of screen geometry.

6.1.13 WTimer functions

Synopsis: bool WTimer.is_set(WTimer timer)
Description: Is timer set?

Synopsis: void WTimer.reset(WTimer timer)
Description: Reset timer.

Synopsis: void WTimer.set(WTimer timer, integer msecs, function
fn)

Description: Set timer to call fn in msecs milliseconds.

6.1.14 WWindow functions

Synopsis: void WWindow.p_move(WWindow wwin)
Description: Start moving wwin with the mouse or other pointing device. This function

should only be used by binding it to mpress or mdrag action.

Synopsis: void WWindow.p_resize(WWindow wwin)
Description: Start resizing wwin with the mouse or other pointing device. This function

should only be used by binding it to mpress or mdrag action.

Synopsis: double WWindow.xid(WWindow wwin)
Description: Return the X window id for wwin.

6.1.15 global functions

Synopsis: export(lib, ...)
Description: Export a list of functions from lib into global namespace.

6.1.16 gr functions

Synopsis: void gr.read_config()
Description: Read drawing engine configuration file look.lua .

Synopsis: void gr.refresh()
Description: Refresh objects’ brushes to update them to use newly loaded style.

Synopsis: bool gr.select_engine(string engine)
Description: Future requests for “brushes” are to be forwarded to the drawing engine

engine. If no engine of such name is known, a module with that name is
attempted to be loaded. This function is only intended to be called from
colour scheme etc. configuration files and can not be used to change the
look of existing objects; for that use gr.read_config.

49

6.1.17 string functions

Synopsis: string.shell_safe(str)
Description: Make str shell-safe.

6.1.18 table functions

Synopsis: table.append(t1, t2)
Description: Add entries that do not exist in t1 from t2 to t1.

Synopsis: table.copy(t, deep)
Description: Make copy of table. If deep is unset, shallow one-level copy is made,

otherwise a deep copy is made.

Synopsis: table.icat(t1, t2)
Description: Insert all positive integer entries from t2 into t1.

Synopsis: table.join(t1, t2)
Description: Create a table containing all entries from t1 and those from t2 that are

missing from t1.

Synopsis: table.map(f, t)
Description: Map all entries of t by f.

6.2 Functions defined in mod_tiling

Synopsis: table mod_tiling.get()
Description: Get parameters. For details see mod_tiling.set.

Synopsis: bool mod_tiling.mkbottom(WRegion reg)
Description: Create a new WTiling ’bottom’ for the group of reg, consisting of reg.

Synopsis: void mod_tiling.set(table tab)
Description: Set parameters. Currently only raise_delay (in milliseconds) is sup-

ported.

Synopsis: bool mod_tiling.untile(WTiling tiling)
Description: If tiling is managed by some group, float the frames in the tiling in that

group, and dispose of tiling.

6.2.1 WSplit functions

Synopsis: table WSplit.geom(WSplit split)
Description: Returns the area of workspace used by the regions under split.

Synopsis: WSplitInner WSplit.parent(WSplit split)
Description: Return parent split for split.

Synopsis: table WSplit.rqgeom(WSplit node, table g)
Description: Attempt to resize and/or move the split tree starting at node. Behaviour

and the g parameter are as for WRegion.rqgeom operating on node (if it
were a WRegion).

Synopsis: void WSplit.transpose(WSplit node)
Description: Transpose contents of node.

50

6.2.2 WSplitInner functions

Synopsis: WSplit WSplitInner.current(WSplitInner node)
Description: Returns the most previously active child node of split.

6.2.3 WSplitRegion functions

Synopsis: WRegion WSplitRegion.reg(WSplitRegion node)
Description: Returns the region contained in node.

6.2.4 WSplitSplit functions

Synopsis: WSplit WSplitSplit.br(WSplitSplit split)
Description: Returns the bottom or right child node of split depending on the direction

of the split.

Synopsis: string WSplitSplit.dir(WSplitSplit split)
Description: Returns the direction of split; either ‘vertical’ or ‘horizontal’.

Synopsis: void WSplitSplit.flip(WSplitSplit split)
Description: Flip contents of split.

Synopsis: WSplit WSplitSplit.tl(WSplitSplit split)
Description: Returns the top or left child node of split depending on the direction of

the split.

6.2.5 WTiling functions

Synopsis: bool WTiling.flip_at(WTiling ws, WRegion reg)
Description: Flip ws at reg or root if nil.

Synopsis: bool WTiling.transpose_at(WTiling ws, WRegion reg)
Description: Transpose ws at reg or root if nil.

Synopsis: WRegion WTiling.farthest(WTiling ws, string dirstr,
bool any)

Description: Return the most previously active region on ws with no other regions next
to it in direction dirstr (‘left’, ‘right’, ‘up’, or ‘down’). If any is not set,
the status display is not considered.

Synopsis: bool WTiling.managed_i(WTiling ws, function iterfn)
Description: Iterate over managed regions of ws until iterfn returns false. The func-

tion is called in protected mode. This routine returns true if it reaches the
end of list without this happening.

Synopsis: WRegion WTiling.nextto(WTiling ws, WRegion reg, string
dirstr, bool any)

Description: Return the most previously active region next to reg in direction dirstr
(‘left’, ‘right’, ‘up’, or ‘down’). The region reg must be managed by ws.
If any is not set, the status display is not considered.

Synopsis: WSplitRegion WTiling.node_of(WTiling ws, WRegion reg)
Description: For region reg managed by ws return the WSplit a leaf of which reg is.

51

Synopsis: bool WTiling.set_floating_at(WTiling ws, WRegion reg,
string how, string dirstr)

Description: Toggle floating of the sides of a split containin reg as indicated by the pa-
rameters how (‘set’, ‘unset’, or ‘toggle’) and dirstr (‘left’, ‘right’,
‘up’, or ‘down’). The new status is returned (and false also on error).

Synopsis: WSplitSplit WTiling.set_floating(WTiling ws,
WSplitSplit split, string how)

Description: Toggle floating of a split’s sides at split as indicated by the parameter how
(‘set’, ‘unset’, or ‘toggle’). A split of the appropriate is returned, if there
was a change.

Synopsis: WFrame WTiling.split(WTiling ws, WSplit node, string
dirstr)

Description: Create a new frame on ws ‘above’, ‘below’ ‘left’ of, or ‘right’ of node
as indicated by dirstr. If dirstr is prefixed with ‘floating:’ a floating
split is created.

Synopsis: WFrame WTiling.split_at(WTiling ws, WFrame frame,
string dirstr, bool attach_current)

Description: Split frame creating a new frame to direction dirstr (one of ‘left’,
‘right’, ‘top’ or ‘bottom’) of frame. If attach_current is set, the re-
gion currently displayed in frame, if any, is moved to thenew frame. If
dirstr is prefixed with ‘floating:’, a floating split is created.

Synopsis: WFrame WTiling.split_top(WTiling ws, string dirstr)
Description: Same as WTiling.split at the root of the split tree.

Synopsis: WSplit WTiling.split_tree(WTiling ws)
Description: Returns the root of the split tree.

Synopsis: void WTiling.unsplit_at(WTiling ws, WRegion reg)
Description: Try to relocate regions managed by reg to another frame and, if possible,

destroy it.

6.3 Functions defined in mod_query

Synopsis: mod_query.defcmd(cmd, fn)
Description: Define a command override for the query_exec query.

Synopsis: mod_query.message(mplex, str)
Description: Display a message in mplex.

Synopsis: table mod_query.get()
Description: Get module configuration. For more information see mod_query.set.

Synopsis: void mod_query.history_clear()
Description: Clear line editor history.

Synopsis: string mod_query.history_get(integer n)
Description: Get entry at index n in line editor history, 0 being the latest.

Synopsis: bool mod_query.history_push(string str)
Description: Push an entry into line editor history.

52

Synopsis: integer mod_query.history_search(string s, integer
from, bool bwd, bool exact)

Description: Try to find matching history entry. Returns -1 if none was found. The param-
eter from specifies where to start searching from, and bwd causes backward
search from that point. If exact is not set, s only required to be a prefix of
the match.

Synopsis: table mod_query.history_table()
Description: Return table of history entries.

Synopsis: void mod_query.set(table tab)
Description: Set module configuration. The following are supported:

Field Description
autoshowcompl (boolean) Is auto-show-completions en-

abled? (default: true).
autoshowcompl_delay (integer) auto-show-completions delay in

milliseconds (default: 250).
caseicompl (boolean) Turn some completions case-

insensitive (default: false).
substrcompl (boolean) Complete on sub-strings in some

cases (default: ftrue).

Synopsis: mod_query.popen_completions(cp, cmd, fn, reshnd, wd)
Description: This function can be used to read completions from an external source.

The parameter cp is the completion proxy to be used, and the string cmd
the shell command to be executed, in the directory wd. To its stdout, the
command should on the first line write the common_beg parameter of
WComplProxy.set_completions (which fn maybe used to override)
and a single actual completion on each of the successive lines. The function
reshnd may be used to override a result table building routine.

Synopsis: mod_query.query(mplex, prompt, initvalue, handler,
completor, context)

Description: Low-level query routine. mplex is the WMPlex to display the query in,
prompt the prompt string, and initvalue the initial contents of the query
box. handler is a function that receives (mplex, result string) as parame-
ter when the query has been succesfully completed, completor the com-
pletor routine which receives a (cp, str, point) as parameters. The pa-
rameter str is the string to be completed and point cursor’s location
within it. Completions should be eventually, possibly asynchronously, set
with WComplProxy.set_completions on cp.

Synopsis: mod_query.query_attachclient(mplex)
Description: This query asks for the name of a client window and attaches it to the

frame the query was opened in. It uses the completion function ioncore.
complete_clientwin.

Synopsis: mod_query.query_editfile(mplex, script, prompt)
Description: Asks for a file to be edited. This script uses run-mailcap --mode=edit

by default, but you may provide an alternative script to use. The default
prompt is "Edit file:" (translated).

Synopsis: mod_query.query_exec(mplex)

53

Description: This function asks for a command to execute with /bin/sh . If the command
is prefixed with a colon (’:’), the command will be run in an XTerm (or other
terminal emulator) using the script ion-runinxterm . Two colons (’::’) will
ask you to press enter after the command has finished.

Synopsis: mod_query.query_gotoclient(mplex)
Description: This query asks for the name of a client window and switches focus to

the one entered. It uses the completion function ioncore.complete_
clientwin.

Synopsis: mod_query.query_lua(mplex)
Description: This query asks for Lua code to execute. It sets the variable ’_’ in the local

environment of the string to point to the mplex where the query was cre-
ated. It also sets the table arg in the local environment to {_, _:current
()}.

Synopsis: mod_query.query_man(mplex, prog)
Description: This query asks for a manual page to display. By default it runs the man

command in an xterm using ion-runinxterm, but it is possible to pass
another program as the prog argument.

Synopsis: mod_query.query_menu(mplex, sub, themenu, prompt)
Description: This query can be used to create a query of a defined menu.

Synopsis: mod_query.query_renameframe(frame)
Description: This function asks for a name new for the frame where the query was cre-

ated.

Synopsis: mod_query.query_renameworkspace(mplex, ws)
Description: This function asks for a name new for the workspace ws, or the one on

which mplex resides, if it is not set. If mplex is not set, one is looked for.

Synopsis: mod_query.query_restart(mplex)
Description: This query asks whether the user wants restart Ioncore. If the answer is ’y’,

’Y’ or ’yes’, so will happen.

Synopsis: mod_query.query_runfile(mplex, script, prompt)
Description: Asks for a file to be viewed. This script uses run-mailcap --action=

view by default, but you may provide an alternative script to use. The de-
fault prompt is "View file:" (translated).

Synopsis: mod_query.query_shutdown(mplex)
Description: This query asks whether the user wants to exit Ion (no session manager)

or close the session (running under a session manager that supports such
requests). If the answer is ’y’, ’Y’ or ’yes’, so will happen.

Synopsis: mod_query.query_ssh(mplex, ssh)
Description: This query asks for a host to connect to with SSH. Hosts to tab-complete are

read from ˜/.ssh/known_hosts .

Synopsis: mod_query.query_workspace(mplex)
Description: This query asks for the name of a workspace. If a workspace (an object in-

heriting WGroupWS) with such a name exists, it will be switched to. Other-
wise a new workspace with the entered name will be created and the user
will be queried for the type of the workspace.

54

Synopsis: mod_query.query_yesno(mplex, prompt, handler)
Description: This function query will display a query with prompt prompt in mplex

and if the user answers affirmately, call handlerwith mplex as parameter.

Synopsis: mod_query.show_about_ion(mplex)
Description: Display an "About Ion" message in mplex.

Synopsis: mod_query.show_tree(mplex, reg, max_depth)
Description: Show information about a region tree

Synopsis: mod_query.warn(mplex, str)
Description: Display an error message box in the multiplexer mplex.

6.3.1 WComplProxy functions

Synopsis: bool WComplProxy.set_completions(WComplProxy proxy,
table compls)

Description: Set completion list of the WEdln that proxy refers to to compls, if it is still
waiting for this completion run. The numerical indexes of compls list the
found completions. If the entry common_beg (common_end) exists, it gives
an extra common prefix (suffix) of all found completions.

6.3.2 WEdln functions

Synopsis: void WEdln.back(WEdln wedln)
Description: Move backward one character.

Synopsis: void WEdln.backspace(WEdln wedln)
Description: Delete previous character.

Synopsis: void WEdln.bkill_word(WEdln wedln)
Description: Starting from the previous characters, delete possible whitespace and pre-

ceding alphanumeric characters until previous non-alphanumeric charac-
ter.

Synopsis: void WEdln.bol(WEdln wedln)
Description: Go to the beginning of line.

Synopsis: void WEdln.bskip_word(WEdln wedln)
Description: Go to to beginning of current sequence of alphanumeric characters followed

by whitespace.

Synopsis: void WEdln.clear_mark(WEdln wedln)
Description: Clear mark.

Synopsis: void WEdln.complete(WEdln wedln, string cycle, string
mode)

Description: Call completion handler with the text between the beginning of line and
current cursor position, or select next/previous completion from list if in
auto-show-completions mode and cycle is set to ‘next’ or ‘prev’, respec-
tively. The mode may be ‘history’ or ‘normal’. If it is not set, the previ-
ous mode is used. Normally next entry is not cycled to despite the setting
of cycle if mode switch occurs. To override this, use ‘next-always’ and
‘prev-always’ for cycle.

55

Synopsis: string WEdln.contents(WEdln wedln)
Description: Get line editor contents.

Synopsis: string WEdln.context(WEdln wedln)
Description: Get history context for wedln.

Synopsis: void WEdln.copy(WEdln wedln)
Description: Copy text between mark and current cursor position to clipboard.

Synopsis: void WEdln.cut(WEdln wedln)
Description: Copy text between mark and current cursor position to clipboard and then

delete that sequence.

Synopsis: void WEdln.delete(WEdln wedln)
Description: Delete current character.

Synopsis: void WEdln.eol(WEdln wedln)
Description: Go to the end of line.

Synopsis: void WEdln.finish(WEdln wedln)
Description: Close wedln and call any handlers.

Synopsis: void WEdln.forward(WEdln wedln)
Description: Move forward one character.

Synopsis: void WEdln.history_next(WEdln wedln, bool match)
Description: Replace line editor contents with next entry in history if one exists. If match

is true, the initial part of the history entry must match the current line from
beginning to point.

Synopsis: void WEdln.history_prev(WEdln wedln, bool match)
Description: Replace line editor contents with previous in history if one exists. If match

is true, the initial part of the history entry must match the current line from
beginning to point.

Synopsis: void WEdln.insstr(WEdln wedln, string str)
Description: Input str in wedln at current editing point.

Synopsis: bool WEdln.is_histcompl(WEdln wedln)
Description: Get history completion mode.

Synopsis: void WEdln.kill_line(WEdln wedln)
Description: Delete the whole line.

Synopsis: void WEdln.kill_to_bol(WEdln wedln)
Description: Delete all characters from previous to beginning of line.

Synopsis: void WEdln.kill_to_eol(WEdln wedln)
Description: Delete all characters from current to end of line.

Synopsis: void WEdln.kill_word(WEdln wedln)
Description: Starting from the current point, delete possible whitespace and following

alphanumeric characters until next non-alphanumeric character.

Synopsis: integer WEdln.mark(WEdln wedln)
Description: Get current mark (start of selection) for wedln. Return value of -1 indicates

that there is no mark, and 0 is the beginning of the line.

56

Synopsis: bool WEdln.next_completion(WEdln wedln)
Description: Select next completion.

Synopsis: void WEdln.paste(WEdln wedln)
Description: Request selection from application holding such.

Note that this function is asynchronous; the selection will not actually be
inserted before Ion receives it. This will be no earlier than Ion return to its
main loop.

Synopsis: integer WEdln.point(WEdln wedln)
Description: Get current editing point. Beginning of the edited line is point 0.

Synopsis: bool WEdln.prev_completion(WEdln wedln)
Description: Select previous completion.

Synopsis: void WEdln.set_context(WEdln wedln, string context)
Description: Set history context for wedln.

Synopsis: void WEdln.set_mark(WEdln wedln)
Description: Set mark to current cursor position.

Synopsis: void WEdln.skip_word(WEdln wedln)
Description: Go to to end of current sequence of whitespace followed by alphanumeric

characters..

Synopsis: void WEdln.transpose_chars(WEdln wedln)
Description: Transpose characters.

Synopsis: void WEdln.transpose_words(WEdln wedln)
Description: Transpose words.

6.3.3 WInput functions

Synopsis: void WInput.cancel(WInput input)
Description: Close input not calling any possible finish handlers.

Synopsis: void WInput.scrolldown(WInput input)
Description: Scroll input input text contents down.

Synopsis: void WInput.scrollup(WInput input)
Description: Scroll input input text contents up.

6.4 Functions defined in mod_menu

Synopsis: mod_menu.grabmenu(mplex, sub, menu_or_name, param)
Description: This function is similar to mod_menu.menu, but input is grabbed and the

key used to active the menu can be used to cycle through menu entries.

Synopsis: mod_menu.menu(mplex, sub, menu_or_name, param)
Description: Display a menu in the lower-left corner of mplex. The variable menu_or

_name is either the name of a menu defined with mod_menu.defmenu or
directly a table similar to ones passesd to this function. When this function
is called from a binding handler, sub should be set to the second argument
of to the binding handler (_sub) so that the menu handler will get the same

57

parameters as the binding handler. Extra options can be passed in the table
param. The initial entry can be specified as the field initial as an integer
starting from 1. Menus can be made to use a bigger style by setting the field
big to true.

Synopsis: table mod_menu.get()
Description: Get module basic settings. For details, see mod_menu.set.

Synopsis: void mod_menu.set(table tab)
Description: Set module basic settings. The parameter table may contain the following

fields:
Field Description
scroll_amount Number of pixels to scroll at a time in pointer-

controlled menus when one extends beyond a bor-
der of the screen and the pointer touches that border.

scroll_delay Time between such scrolling events in milliseconds.

Synopsis: mod_menu.pmenu(win, sub, menu_or_name)
Description: This function displays a drop-down menu and should only be called from

a mouse press handler. The parameters are similar to those of mod_menu.
menu.

6.4.1 WMenu functions

Synopsis: void WMenu.cancel(WMenu menu)
Description: Close menu not calling any possible finish handlers.

Synopsis: void WMenu.finish(WMenu menu)
Description: If selected entry is a submenu, display that. Otherwise destroy the menu

and call handler for selected entry.

Synopsis: void WMenu.select_next(WMenu menu)
Description: Select next entry in menu.

Synopsis: void WMenu.select_nth(WMenu menu, integer n)
Description: Select n:th entry in menu.

Synopsis: void WMenu.select_prev(WMenu menu)
Description: Select previous entry in menu.

Synopsis: void WMenu.typeahead_clear(WMenu menu)
Description: Clear typeahead buffer.

6.5 Functions defined in mod_dock

Synopsis: void mod_dock.set_floating_shown_on(WMPlex mplex,
string how)

Description: Toggle floating docks on mplex.

6.5.1 WDock functions

Synopsis: bool WDock.attach(WDock dock, WRegion reg)
Description: Attach reg to dock.

58

Synopsis: table WDock.get(WDock dock)
Description: Get dock’s configuration table. See WDock.set for a description of the ta-

ble.

Synopsis: void WDock.resize(WDock dock)
Description: Resizes and refreshes dock.

Synopsis: void WDock.set(WDock dock, table conftab)
Description: Configure dock. conftab is a table of key/value pairs:

Key Values Description
name string Name of dock
pos string in {t, m, b} × {t, c, b} Dock position. Can only be

used in floating mode.
grow up/down/left/right Growth direction where new

dockapps are added. Also sets
orientation for dock when
working as WMPlex status
display (see WMPlex.set_
stdisp).

is_auto bool Should dock automatically
manage new dockapps?

Any parameters not explicitly set in conftab will be left unchanged.

6.6 Functions defined in mod_sp

Synopsis: bool mod_sp.set_shown(WFrame sp, string how)
Description: Toggle displayed status of sp. The parameter how is one of ‘set’, ‘unset’,

or ‘toggle’. The resulting status is returned.

Synopsis: bool mod_sp.set_shown_on(WMPlex mplex, string how)
Description: Change displayed status of some scratchpad on mplex if one is found. The

parameter how is one of ‘set’, ‘unset’, or ‘toggle’. The resulting status is
returned.

6.7 Functions defined in mod_statusbar

Synopsis: mod_statusbar.create(param)
Description: Create a statusbar. The possible parameters in the table param are:

Variable Type Description
template string The template; see Section 3.6.
pos string Position: ‘tl’, ‘tr’, ‘bl’ or ‘br’ (for the obvious

combinations of top/left/bottom/right).
screen integer Screen number to create the statusbar on.
fullsize boolean If set, the statusbar will waste space instead of

adapting to layout.
systray boolaen Swallow (KDE protocol) systray icons.

Synopsis: mod_statusbar.inform(name, value)
Description: Inform of a value.

59

Synopsis: mod_statusbar.launch_statusd(cfg)
Description: Load modules and launch ion-statusd with configuration table cfg. The

options for each ion-statusd monitor script should be contained in the cor-
responding sub-table of cfg.

Synopsis: table mod_statusbar.statusbars()
Description: Returns a list of all statusbars.

Synopsis: mod_statusbar.update(update_templates)
Description: Update statusbar contents. To be called after series of mod_statusbar.

inform calls.

6.7.1 WStatusBar functions

Synopsis: table WStatusBar.get_template_table(WStatusBar sb)
Description: Get statusbar template as table.

Synopsis: bool WStatusBar.is_systray(WStatusBar sb)
Description: Is sb used as a systray?

Synopsis: bool WStatusBar.set_systray(WStatusBar sb, string how)
Description: Enable or disable use of sb as systray. The parameter how can be one of

‘set’, ‘unset’, or ‘toggle’. Resulting state is returned.

Synopsis: void WStatusBar.set_template(WStatusBar sb, string tmpl
)

Description: Set statusbar template.

Synopsis: void WStatusBar.set_template_table(WStatusBar sb, table
t)

Description: Set statusbar template as table.

Synopsis: void WStatusBar.update(WStatusBar sb, table t)
Description: Set statusbar template.

6.8 Functions defined in de

Synopsis: bool de.defstyle(string name, table tab)
Description: Define a style.

Synopsis: bool de.defstyle_rootwin(WRootWin rootwin, string name,
table tab)

Description: Define a style for the root window rootwin.

Synopsis: void de.reset()
Description: Clear all styles from drawing engine memory.

Synopsis: table de.substyle(string pattern, table tab)
Description: Define a substyle.

6.9 Hooks

60

Hook name: clientwin_do_manage_alt
Parameters: (WClientWin, table)
Description: Called when we want to manage a new client window. The table argument

contains the following fields:
Field Type Description
switchto bool Do we want to switch to the client window.
jumpto bool Do we want to jump to the client window.
userpos bool Geometry set by user.
dockapp bool Client window is a dock-app.
maprq bool Map request (and not initialisation scan).
gravity number Window gravity.
geom table Requested geometry; x, y, w, h.
tfor WClientWin Transient for window.

This hook is not called in protected mode and can be used for arbi-
trary placement policies (deciding in which workspace a new WClientWin
should go). In this case, you can call
reg:attach(cwin)
where reg is the region where the window should go, and cwin is the first
argument of the function added to the hook.

Hook name: clientwin_mapped_hook
Parameters: WClientWin
Description: Called when we have started to manage a client window.

Hook name: clientwin_property_change_hook
Parameters: (WClientWin, integer)
Description: Called when the property identified by the parameter atom id (integer) has

changed on a client window.

Hook name: clientwin_unmapped_hook
Parameters: number
Description: Called when we no longer manage a client window. The parameter is the X

ID of the window; see WClientWin.xid.

Hook name: frame_managed_changed_hook
Parameters: table
Description: Called when there are changes in the objects managed by a frame or their

order. The table parameter has the following fields:
Field Type Description
reg WFrame The frame in question
mode string ‘switchonly’, ‘reorder’, ‘add’ or ‘remove’
sw bool Switch occurred
sub WRegion The managed region (primarily) affected

Hook name: ioncore_sigchld_hook
Parameters: integer
Description: Called when a child process has exited. The parameter is the PID of the

process.

Hook name: ioncore_deinit_hook
Parameters: ()
Description: Called when Ion is deinitialising and about to quit.

61

Hook name: ioncore_post_layout_setup_hook
Parameters: ()
Description: Called when Ion has done all initialisation and is almost ready to enter the

main-loop, except no windows are yet being managed.

Hook name: ioncore_snapshot_hook
Parameters: ()
Description: Called to signal scripts and modules to save their state (if any).

Hook name: ioncore_submap_ungrab_hook
Parameters: ()
Description: This hook is used to signal whenever Ion leaves the submap grab mode.

Hook name: tiling_placement_alt
Parameters: table
Description: Called when a client window is about to be managed by a WTiling to al-

low for alternative placement policies. The table has the following fields:
Field Type Description
tiling WTiling The tiling
reg WRegion The region (always a WClientWin at the mo-

ment) to be placed
mp table This table contains the same fields as the pa-

rameter of clientwin_do_manage_alt
res_frame WFrame A successful handler should return the target

frame here.
This hook is just for placing within a given workspace after the workspace
has been decided by the default workspace selection policy. It is called
in protected mode. For arbitrary placement policies, clientwin_do_
manage_alt should be used; it isn’t called in protected mode,

Hook name: region_do_warp_alt
Parameters: WRegion
Description: This alt-hook exist to allow for alternative pointer warping implementa-

tions.

Hook name: screen_managed_changed_hook
Parameters: table
Description: Called when there are changes in the objects managed by a screen or their

order. The table parameter is similar to that of frame_managed_changed
_hook.

Hook name: region_notify_hook
Parameters: (WRegion, string)
Description: Signalled when something (minor) has changed in relation to the first pa-

rameter region. The string argument gives the change:

62

String Description
deinit The region is about to be deinitialised.
activated The region has received focus.
inactivated The region has lost focus.
activity There’s been activity in the region itself.
sub_activity There’s been activity in some sub-region.
name The name of the region has changed.
unset_manager The region no longer has a manager.
set_manager The region now has a manager.
tag Tagging state has changed.
pseudoactivated The region has become pseudo-active (see be-

low).
pseudoinactivated The region is no longer pseudo-active.

A region is pseudo-active, when a) it is itself not active (does not not have
the focus, and may not even have a window that could have it), but b) some
region managed by it is active.

6.10 Miscellaneous

6.10.1 Size policies

Some functions accept a sizepolicy parameter. The possible values are:

‘default’, ‘full’, ‘full_bounds’, ‘free’, ‘free_glue’, ‘northwest’, ‘north’,
‘northeast’, ‘west’, ‘center’, ‘east’, ‘southwest’, ‘south’, ‘southeast’,
‘stretch_top’, ‘stretch_bottom’, ‘stretch_left’, ‘stretch_right’,
‘free_glue_northwest’, ‘free_glue_north’, ‘free_glue_northeast’,
‘free_glue_west’, ‘free_glue_center’, ‘free_glue_east’,
‘free_glue_southwest’, ‘free_glue_south’, and ‘free_glue_southeast’.

The “free” policies allow the managed object to be moved around, whereas the other
versions do not. The “glue” policies glue the object to some border, while allowing it to be
moved away from it by user action, but not automatically. The “stretch” policies stretch
the object along the given border, while the coordinate-based policies simply place the
object along that border.

63

Appendix A

GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and use-
ful document “free” in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public Li-
cense, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals pro-
viding the same freedoms that the software does. But this License is not limited to soft-
ware manuals; it can be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this Li-
cense. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to
use that work under the conditions stated herein. The “Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way requiring per-
mission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

64

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revis-
ing the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly avail-
able DTD, and standard-conforming simple HTML, PostScript or PDF designed for hu-
man modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

65

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin distribu-
tion of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

66

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer

67

review or that the text has been approved by an organization as the authoritative defini-
tion of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, un-
der the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmod-
ified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

68

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

69

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with
. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

70

Appendix B

Full class hierarchy visible to Lua-side

Obj
|-->WHook
|-->WTimer
|-->WMoveresMode
|-->WRegion
| |-->WClientWin
| |-->WWindow
| | |-->WMPlex
| | | |-->WFrame
| | | ‘-->WScreen
| | | ‘->WRootWin
| | |-->WInfoWin
| | | ‘-->WStatusBar (mod_statusbar)
| | |-->WMenu (mod_menu)
| | ‘-->WInput (mod_query)
| | |-->WEdln (mod_query)
| | ‘-->WMessage (mod_query)
| |-->WGroup
| | |-->WGroupWS
| | ‘-->WGroupCW
| ‘-->WTiling (mod_tiling)
‘-->WSplit (mod_tiling)

|-->WSplitInner (mod_tiling)
| ‘-->WSplitSplit (mod_tiling)
| ‘-->WSplitFloat (mod_tiling)
‘-->WSplitRegion (mod_tiling)

‘-->WSplitST (mod_tiling)

71

List of functions

de.defstyle . 60
de.defstyle_rootwin . 60
de.reset . 60
de.substyle . 60
export . 49
gr.read_config . 49
gr.refresh . 49
gr.select_engine . 49
ioncore.aboutmsg . 34
ioncore.activity_first . 34
ioncore.activity_i . 35
ioncore.bdoc . 33
ioncore.chdir_for . 33
ioncore.clientwin_i . 35
ioncore.compile_cmd . 33
ioncore.create_timer . 33
ioncore.create_ws . 33
ioncore.current . 35
ioncore.defbindings . 33
ioncore.defctxmenu . 33
ioncore.defer . 40
ioncore.deflayout . 33
ioncore.defmenu . 33
ioncore.defshortening . 35
ioncore.defwinprop . 34
ioncore.detach . 35
ioncore.exec . 35
ioncore.exec_on . 34
ioncore.find_manager . 34
ioncore.find_screen_id . 35
ioncore.focushistory_i . 35
ioncore.get . 36
ioncore.getbindings . 34
ioncore.getctxmenu . 34
ioncore.get_dir_for . 34
ioncore.get_hook . 40
ioncore.getlayout . 34
ioncore.getmenu . 34
ioncore.get_paths . 36
ioncore.get_savefile . 34

72

ioncore.getwinprop . 34
ioncore.goto_activity . 36
ioncore.goto_first . 36
ioncore.goto_next . 36
ioncore.goto_next_screen . 36
ioncore.goto_nth_screen . 36
ioncore.goto_previous . 36
ioncore.goto_prev_screen . 36
ioncore.is_i18n . 36
ioncore.kpress . 40
ioncore.kpress_wait . 40
ioncore.load_module . 36
ioncore.lookup_clientwin . 36
ioncore.lookup_region . 37
ioncore.lookup_script . 34
ioncore.match_winprop_dflt . 40
ioncore.mclick . 40
ioncore.mdblclick . 40
ioncore.mdrag . 40
ioncore.menuentry . 41
ioncore.mpress . 41
ioncore.navi_first . 37
ioncore.navi_next . 37
ioncore.popen_bgread . 37
ioncore.progname . 37
ioncore.read_savefile . 34
ioncore.refresh_stylelist . 41
ioncore.region_i . 37
ioncore.request_selection . 37
ioncore.resign . 37
ioncore.restart . 37
ioncore.restart_other . 37
ioncore.set . 37
ioncore.set_paths . 39
ioncore.set_selection . 39
ioncore.shutdown . 39
ioncore.snapshot . 39
ioncore.submap . 41
ioncore.submap_enter . 41
ioncore.submap_wait . 41
ioncore.submenu . 41
ioncore.tabnum.clear . 41
ioncore.tabnum.show . 41
ioncore.tagged_attach . 41
ioncore.tagged_clear . 39
ioncore.tagged_first . 39
ioncore.tagged_i . 39
ioncore.TR . 33
ioncore.unsqueeze . 39

73

ioncore.version . 39
ioncore.warn . 39
ioncore.warn_traced . 39
ioncore.write_savefile . 34
ioncore.x_change_property . 39
ioncore.x_delete_property . 39
ioncore.x_get_atom_name . 39
ioncore.x_get_text_property . 40
ioncore.x_get_window_property . 40
ioncore.x_intern_atom . 40
ioncore.x_set_text_property . 40
mod_dock.set_floating_shown_on . 58
mod_menu.get . 58
mod_menu.grabmenu . 57
mod_menu.menu . 57
mod_menu.pmenu . 58
mod_menu.set . 58
mod_query.defcmd . 52
mod_query.get . 52
mod_query.history_clear . 52
mod_query.history_get . 52
mod_query.history_push . 52
mod_query.history_search . 53
mod_query.history_table . 53
mod_query.message . 52
mod_query.popen_completions . 53
mod_query.query . 53
mod_query.query_attachclient . 53
mod_query.query_editfile . 53
mod_query.query_exec . 53
mod_query.query_gotoclient . 54
mod_query.query_lua . 54
mod_query.query_man . 54
mod_query.query_menu . 54
mod_query.query_renameframe . 54
mod_query.query_renameworkspace . 54
mod_query.query_restart . 54
mod_query.query_runfile . 54
mod_query.query_shutdown . 54
mod_query.query_ssh . 54
mod_query.query_workspace . 54
mod_query.query_yesno . 55
mod_query.set . 53
mod_query.show_about_ion . 55
mod_query.show_tree . 55
mod_query.warn . 55
mod_sp.set_shown . 59
mod_sp.set_shown_on . 59
mod_statusbar.create . 59

74

mod_statusbar.inform . 59
mod_statusbar.launch_statusd . 60
mod_statusbar.statusbars . 60
mod_statusbar.update . 60
mod_tiling.get . 50
mod_tiling.mkbottom . 50
mod_tiling.set . 50
mod_tiling.untile . 50
string.shell_safe . 50
table.append . 50
table.copy . 50
table.icat . 50
table.join . 50
table.map . 50
WClientWin.get_ident . 42
WClientWin.kill . 42
WClientWin.nudge . 42
WClientWin.quote_next . 42
WClientWin.xid . 42
WComplProxy.set_completions . 55
WDock.attach . 58
WDock.get . 59
WDock.resize . 59
WDock.set . 59
WEdln.back . 55
WEdln.backspace . 55
WEdln.bkill_word . 55
WEdln.bol . 55
WEdln.bskip_word . 55
WEdln.clear_mark . 55
WEdln.complete . 55
WEdln.contents . 56
WEdln.context . 56
WEdln.copy . 56
WEdln.cut . 56
WEdln.delete . 56
WEdln.eol . 56
WEdln.finish . 56
WEdln.forward . 56
WEdln.history_next . 56
WEdln.history_prev . 56
WEdln.insstr . 56
WEdln.is_histcompl . 56
WEdln.kill_line . 56
WEdln.kill_to_bol . 56
WEdln.kill_to_eol . 56
WEdln.kill_word . 56
WEdln.mark . 56
WEdln.next_completion . 57

75

WEdln.paste . 57
WEdln.point . 57
WEdln.prev_completion . 57
WEdln.set_context . 57
WEdln.set_mark . 57
WEdln.skip_word . 57
WEdln.transpose_chars . 57
WEdln.transpose_words . 57
WFrame.is_shaded . 42
WFrame.maximize_horiz . 42
WFrame.maximize_vert . 42
WFrame.mode . 42
WFrame.p_switch_tab . 42
WFrame.p_tabdrag . 42
WFrame.set_grattr . 42
WFrame.set_mode . 42
WFrame.set_shaded . 42
WGroup.attach . 43
WGroup.attach_new . 43
WGroup.bottom . 43
WGroup.managed_i . 43
WGroup.set_bottom . 43
WGroup.set_fullscreen . 43
WGroupWS.attach_framed . 43
WHook.add . 44
WHook.listed . 44
WHook.remove . 44
WInfoWin.set_text . 44
WInput.cancel . 57
WInput.scrolldown . 57
WInput.scrollup . 57
WMenu.cancel . 58
WMenu.finish . 58
WMenu.select_next . 58
WMenu.select_nth . 58
WMenu.select_prev . 58
WMenu.typeahead_clear . 58
WMoveresMode.cancel . 46
WMoveresMode.finish . 46
WMoveresMode.geom . 46
WMoveresMode.move . 46
WMoveresMode.resize . 46
WMoveresMode.rqgeom . 46
WMPlex.attach . 44
WMPlex.attach_new . 44
WMPlex.dec_index . 45
WMPlex.get_index . 45
WMPlex.get_stdisp . 45
WMPlex.inc_index . 45

76

WMPlex.is_hidden . 45
WMPlex.managed_i . 45
WMPlex.mx_count . 45
WMPlex.mx_current . 45
WMPlex.mx_i . 45
WMPlex.mx_nth . 45
WMPlex.set_hidden . 45
WMPlex.set_index . 45
WMPlex.set_stdisp . 45
WMPlex.switch_next . 46
WMPlex.switch_nth . 46
WMPlex.switch_prev . 46
WRegion.begin_kbresize . 47
WRegion.current . 47
WRegion.geom . 47
WRegion.get_configuration . 47
WRegion.goto . 47
WRegion.groupleader_of . 47
WRegion.is_active . 47
WRegion.is_activity . 47
WRegion.is_mapped . 47
WRegion.is_tagged . 47
WRegion.manager . 47
WRegion.name . 47
WRegion.parent . 47
WRegion.rootwin_of . 47
WRegion.rqclose . 47
WRegion.rqclose_propagate . 48
WRegion.rqgeom . 48
WRegion.rqorder . 48
WRegion.screen_of . 48
WRegion.set_activity . 48
WRegion.set_name . 48
WRegion.set_name_exact . 48
WRegion.set_tagged . 48
WRegion.size_hints . 48
WRootWin.current_scr . 48
WScreen.id . 49
WScreen.set_managed_offset . 49
WSplit.geom . 50
WSplitInner.current . 51
WSplit.parent . 50
WSplitRegion.reg . 51
WSplit.rqgeom . 50
WSplitSplit.br . 51
WSplitSplit.dir . 51
WSplitSplit.flip . 51
WSplitSplit.tl . 51
WSplit.transpose . 50

77

WStatusBar.get_template_table . 60
WStatusBar.is_systray . 60
WStatusBar.set_systray . 60
WStatusBar.set_template . 60
WStatusBar.set_template_table . 60
WStatusBar.update . 60
WTiling.farthest . 51
WTiling.flip_at . 51
WTiling.managed_i . 51
WTiling.nextto . 51
WTiling.node_of . 51
WTiling.set_floating . 52
WTiling.set_floating_at . 52
WTiling.split . 52
WTiling.split_at . 52
WTiling.split_top . 52
WTiling.split_tree . 52
WTiling.transpose_at . 51
WTiling.unsplit_at . 52
WTimer.is_set . 49
WTimer.reset . 49
WTimer.set . 49
WWindow.p_move . 49
WWindow.p_resize . 49
WWindow.xid . 49

78

Index

acrobatic, 18
Alt, 15
AnyModifier, 15
aspect, 19
resizeinc, 19

Button-n, 15

class
winprop, 19

clientwin_do_manage_alt, 61
clientwin_mapped_hook, 61
clientwin_property_change_hook,

61
clientwin_unmapped_hook, 61
Control, 15

defmenu, 16
drawing engine, 23

ETCDIR, 10

float, 18
frame_managed_changed_hook, 61
fullscreen, 18

ignore_aspect, 19
ignore_resizeinc, 19
ignore_cfgrq, 18
ignore_max_size, 19
ignore_min_size, 19
ignore_net_active_window, 18
instance

winprop, 19
ioncore_deinit_hook, 61
ioncore_post_layout_setup_hook,

62
ioncore_sigchld_hook, 61
ioncore_snapshot_hook, 62
ioncore_submap_ungrab_hook, 62
is_dockapp

winprop, 19

is_transient
winprop, 19

jumpto, 18

keysymdef.h , 15

Lock, 15

manager, 8
max_size, 19
menuentry, 16
menus, 16
min_size, 19
ModN, 15

name
winprop, 19

new_group, 18
NumLock, 15

Obj, 7
oneshot, 18
orientation, 18

parent, 8
PREFIX, 10

region_do_warp_alt, 62
region_notify_hook, 62
role

winprop, 19
root window, 8

screen
physical, 8
X, 8

screen_managed_changed_hook, 62
ScrollLock, 15
Shift, 15
statusbar, 18
style, 23
submenu, 16

79

substyle, 23
switchto, 18
system.mk , 10

target, 18
tiling_placement_alt, 62
transient, 20
transient_mode, 19
transparent, 19

userpos, 19

WClientWin, 8
WEdln, 8
WFrame, 8
WGroup, 8
WGroupCW, 8
WGroupWS, 8
Winprops, 18
WInput, 8
WMessage, 8
WRegion, 7
WRootWin, 8
WScreen, 8
WSplit, 8
WTiling, 8
WWindow, 8

Xinerama, 8
xmodmap , 15
xprop, 20

80

Bibliography

[1] The Ion 3 scripts repository, http://iki.fi/tuomov/repos/ion-scripts-3/.

81

http://iki.fi/tuomov/repos/ion-scripts-3/

	 Introduction
	 Preliminaries: Key concepts and relations
	 Modules
	 Class and object hierarchies
	 Class hierarchy
	 Object hierarchies: WRegion parents and managers
	 Summary

	 Basic configuration
	 The configuration files
	 A walk through cfg_ion.lua
	 Keys and rodents
	 Binding handlers and special variables
	 Guards
	 Defining the bindings
	 Examples
	 Key specifications
	 Button specifications
	 A further note on the default binding configuration

	 Menus
	 Defining menus
	 Special menus
	 Defining context menus
	 Displaying menus

	 Winprops
	 Sizehint winprops
	 Classes, roles and instances
	 Finding window identification
	 Some common examples

	 The statusbar
	 The template
	 The systray
	 Monitors

	 Graphical styles
	 Drawing engines, style specifications and sub-styles
	 Known styles and substyles

	 Defining styles for the default drawing engine
	 The structure of the configuration files
	 Defining the styles
	 An example

	 Miscellaneous settings
	 Frame user attributes
	 Extra fields for style `frame'
	 Extra fields for style `dock'

	 Scripting
	 Hooks
	 Referring to regions
	 Direct object references
	 Name-based lookups

	 Alternative winprop selection criteria
	 Writing !ion-statusd! monitors

	 Function reference
	 Functions defined in ioncore
	 WClientWin functions
	 WFrame functions
	 WGroup functions
	 WGroupCW functions
	 WGroupWS functions
	 WHook functions
	 WInfoWin functions
	 WMPlex functions
	 WMoveresMode functions
	 WRegion functions
	 WRootWin functions
	 WScreen functions
	 WTimer functions
	 WWindow functions
	 global functions
	 gr functions
	 string functions
	 table functions

	 Functions defined in mod_tiling
	 WSplit functions
	 WSplitInner functions
	 WSplitRegion functions
	 WSplitSplit functions
	 WTiling functions

	 Functions defined in mod_query
	 WComplProxy functions
	 WEdln functions
	 WInput functions

	 Functions defined in mod_menu
	 WMenu functions

	 Functions defined in mod_dock
	 WDock functions

	 Functions defined in mod_sp
	 Functions defined in mod_statusbar
	 WStatusBar functions

	 Functions defined in de
	 Hooks
	 Miscellaneous
	 Size policies

	 GNU Free Documentation License
	 Full class hierarchy visible to Lua-side
	Index
	Bibliography

